Светлые века. Путешествие в мир средневековой науки. Себ Фальк
размышление о природе человека. Книга оставила глубокий след в веках: только на английский язык ее переводили Альфред Великий, Джеффри Чосер и Елизавета I[66]. В этом сочинении Боэций, как многие астрономы до и после него, размышлял о необъятности Вселенной, космически малой величине Земли и холоде далеких звезд. Его присутствие на гравюре напоминает читателям, что математика – нечто большее, чем абстрактные величины.
Рис. 1.7. Арифметика. Фронтиспис четвертого тома «Жемчужины философии» Грегора Рейша (1503). Иллюстрация Альбана Графа
Справа на гравюре изображена фигура равной значимости: это Пифагор. Великий греческий философ выкладывает на счетной доске числа 1241 и 82. Самая дальняя от него линия – это тысячи, следующая – сотни, и так далее, но обратите внимание: между линиями десятков и сотен выделено место для полусотен. Боэций же демонстрирует индо-арабские цифры и их преимущества для записи дробей. Между ними стоит госпожа Арифметика, ее платье украшено степенями двойки и тройки. Хотя в конечном итоге индо-арабские цифры, для операций с которыми достаточно было пера и бумаги, победили (чем они в значительной степени обязаны появлению бухгалтерского учета и сложных банковских операций), счетные доски благодаря своей бесспорной универсальности продолжали применяться и в Новое время. В умелых руках они не уступают электронным калькуляторам. В 1946 году в Токио состоялось захватывающее публичное состязание между японским абацистом и американцем, считавшим на калькуляторе. Победу одержал абацист, который в решении серии сложных математических задач продемонстрировал как невероятную скорость, так и высокую точность вычислений[67].
Менее опытным пользователям счетная доска могла пригодиться для записи промежуточных результатов вычислений. Средневековые математики знали множество способов упростить вычисления, разбивая задачу на серию операций, которые можно было произвести в уме или с помощью абака. Джон Вествик наверняка владел какими-то из них. Один способ, который называют по-разному: умножением по методу русских крестьян или египетским методом, был придуман независимо в нескольких странах, и ему вполне могли обучать и в Сент-Олбанской школе. Он сводит объемные и сложные примеры на умножение и деление к серии удвоений и делений пополам. Популярность этого метода может объяснить, почему в первых учебниках арифметики, использующей новые индо-арабские цифры, умножению и делению числа на два учили как отдельным операциям – чему-то среднему между сложением и умножением.
Красота метода удвоения и деления пополам – в том, что единственное, что вам нужно знать, – это как прибавить число к самому себе. Пусть вам нужно умножить 43 на 13. Запишите эти числа рядом и начинайте удваивать большее и делить пополам меньшее (отбрасывая остаток). Вот что у вас получится:
Конец
66
Вклад (если таковой был) Альфреда в приписываемый ему перевод подвергается сомнению; см. J. Bately, 'Did King Alfred Actually Translate Anything? The Integrity of the Alfredian Canon Revisited,'
67
T. Kojima,