Теория относительности и сверхсветовая скорость (издание второе). Владимир Иванович Моренко
задачи о сравнении разных инерциальных систем отсчета. Замерив угол между вектором скорости смещения движущегося наблюдателя и радиус-вектором между неподвижным наблюдателем и объектом, получаем стандартную геометрическую задачу о нахождении длины третьей стороны треугольника при известности двух сторон и угла между ними. При решении данной задачи необходимо иметь ввиду, что расстоянием между неподвижным объектом и движущимся наблюдателем считается расстояние между указанным объектом и местом, в котором должен находиться движущийся наблюдатель в момент прихода на объект импульса света, испущенного из точки расположения неподвижного наблюдателя. Данное замечание относится также и к расстоянию между неподвижным и движущимся наблюдателями. В силу обратимости движения расстояние между взаимно смещающимися объектом и наблюдателем не зависит от того, будет ли наблюдатель считать себя неподвижным или движущимся. Тогда найденное решение о расстоянии между движущимся наблюдателем и неподвижным объектом и является искомым решением, необходимым для сравнения различных систем координат. Это сравнение автоматически происходит при сопоставлении значений соответственных координат произвольно выбранной точки, и его можно свести к сравнению времен движения импульса света от неподвижного и движущегося наблюдателей к объекту. Есть только одна особенность, заключающаяся в том, что любой точке каждой из сравниваемых систем координат будет соответствовать один и только один момент времени. Следовательно, необходимо ясно осознавать, что такое сравнение будет иметь совсем уж специфический, если не сказать бесполезный, характер. Во-первых, результат сравнения по отношению к пространственному расположению наблюдаемого тела будет кардинально отличаться от визуальной картины. А, во-вторых, что наиболее важно, отсутствует какая-либо возможность сравнивать ход идентичных часов у разных наблюдателей, так как время как независимая переменная было сознательно исключено из рассмотрения, и каждый из наблюдателей снабжен не часами, а секундомером. Можно, конечно, если считать допустимым применение метода параллельного переноса, обойтись и секундомерами, используя их как часы для разных точек, однако мы получим только набор задач по определению третьей стороны треугольника при известности двух других сторон и угла между ними. А решение этих задач в общем случае, как хорошо известно, не совпадает с решением для прямоугольных треугольников. Кроме того, решение каждой из указанных задач будет справедливым только при условии независимости скорости света от скорости источника отраженного импульса света. Именно при таком условии возможно измерение относительной скорости движения разных инерциальных наблюдателей. Но и в этом случае невозможно сравнение результатов непосредственного наблюдения за окружающим миром неподвижным и движущимся наблюдателями с использованием предложенных Лоренцем теоретических обоснований