Математика для гиков. Рафаель Роузен
полезными?
Ответ скрывается в области математики, которая известна как топология. Топология связана с геометрией и изучает то, как формы меняются, когда их растягивают, сжимают, тянут, перекручивают или искажают. (Слово «топология» от греческого «место», «учение».) Однако изменения, изучаемые топологией, должны подчиняться правилу: изменения не должны нарушать оригинальную целостность фигуры. Например, фигуры, которые были порезаны или приклеены друг к другу, не могут считаться допустимыми предметами для топологического изучения. С другой стороны, создаются новые формы, когда вы до конца натягиваете резинку, скручиваете ее в шар или перекручиваете в форму кренделя – все это допустимо. Вкратце, в топологии вы должны быть способны вернуть новую форму в ее первоначальное состояние за одно непрерывное движение. Если вы можете это сделать, то с точки зрения топологии эти две формы эквивалентны.
Теперь отношение карты метро и настоящего маршрута поездов становится ясным. Карта метро – это топологическая трансформация физического маршрута подземки. В некотором смысле карта показывает версию маршрута поездов, которая была растянута и разглажена, будто она сделана из жвачки для рук. Согласно топологии, две формы – схема метро и маршрут, который в действительности существует в системе общественного транспорта, – идентичны.
Шанхайское метро в Китае является самым длинным метро, судя по длине маршрутов, его пути имеют протяженность более 330 миль. Но метро Нью-Йорка имеет самое большое количество остановок в мире – 468 станций.
1.10. Оригами
Математические понятия: геометрия, топология
Оригами – это японское искусство складывания фигурок из бумаги, в Соединенных Штатах оно является времяпрепровождением для детей. Многие из нас видели журавлей, стаканчики и шарики, заполненные воздухом, из бумаги. Но немногие подозревают, что оригами тесно связано с математикой.
Одним захватывающим свойством оригами является умение выйти за рамки традиционной математики, особенно геометрии. Используя лишь сложенную бумажку, человек может поделить угол на три равные части, это задание неподвластно циркулю и линейке в традиционной геометрии. Человек может также использовать оригами, чтобы удвоить куб, это еще одна задача, с которой геометрия справиться не может. (Удвоение куба – это проблема, которой занимались еще в Древнем Египте и Греции. Чтобы удвоить куб, нужно было создать куб, объем которого был бы вдвое больше объема заданного куба. Такую процедуру невозможно закончить, так как сторона большего куба будет равна кубическому корню из 2, а эту длину нельзя построить с помощью циркуля и линейки.)
На самом деле, математическое изучение оригами привело к созданию своих геометрических аксиом, совокупности принципов и определений, похожих на те, что изучал Евклид, известный математик, который жил в Греции