A History of Inventions, Discoveries, and Origins, Volume I (of 2). Johann Beckmann

A History of Inventions, Discoveries, and Origins, Volume I (of 2) - Johann Beckmann


Скачать книгу
outward motion and its return to the vessel for the purpose of being hauled up, being assisted by a long boat, which carried the signal lines and the tackle for working the air-barrels.

      Mr. John Farey, junior, made an improvement in Spalding’s apparatus299. The upper chamber of the diving-bell is very strong and air-tight, without any openings for the admission of water. Two pumps are fixed in the partition, by which air may be forced into the upper chamber, whenever, during a pause in the descent, the lower chamber or the cavity of the bell is replenished with air. By this means, the upper chamber is made a reservoir of condensed air, from which the bell may be replenished with air, when it is desired to increase its buoyancy, by forcing out the water from the lower part. Hence also, the buoyancy of the bell may be at any time diminished, by pumping some of the air from it into the upper chamber, whereby the water will be allowed to enter to a greater height; and as this is effected without wasting the air, there is no danger of diminishing the buoyancy of the machine to a degree which would prevent it from rising, in case the suspending rope or chain should break.

      Smeaton first employed the diving-bell in civil engineering operations in repairing the foundations of Hexham bridge in 1779. The bell was made of wood, and was supplied with air by means of a forcing-pump, which was fixed to the top, and threw in a gallon of air at a time; the river being shallow, the top of the bell was not covered with water300. In 1788 he used a cast-iron one in repairing Ramsgate harbour; a forcing-pump in a boat supplied air through a flexible tube. Since that time it has been frequently used by Rennie and others in submarine operations, recovering property from wrecks, blasting, &c. Mr. Rennie has moreover constructed apparatus for moving the bell in any direction.

      In addition to the various forms of diving-bell, different water- and air-tight dresses have been invented to enable divers to remain in the water and perform various operations. Thus, Dr. Halley invented a leaden cap which covered the diver’s head; it had glass before it, and contained as much air as was sufficient for two minutes, and had affixed to it a thick pliable pipe, with the other end fastened to the bell, and which, at the cap, was furnished with a valve to convey fresh air to the diver from the bell. This pipe, which the diver was obliged to wind round his arm, served him also as a guide to find his way back to the bell301.

      Mr. Martin states that a gentleman at Newton-Bushel, in Devonshire, invented an apparatus consisting of a large case of strong leather, holding about half a hogshead of air, made perfectly water-tight, and adapted to the legs and arms, with a glass in the anterior part, so that when the case was put on, he could walk about very easily at the bottom of the sea, and go into the cabin and other parts of a ship in a wreck, and deliver out the goods; and that he practised this method for forty years, and thereby acquired a large fortune and equal fame302.

      M. Klingert also invented a similar kind of apparatus, and described it in a pamphlet published at Breslau in 1798. The armour was made of tin-plate, in the form of a cylinder, with a round end to enclose the head and body; also, a leather jacket with short sleeves, and a pair of water-tight drawers of the same, buttoned on the metal part, where they joined, and were made tight by brass hoops. Two distinct flexible pipes terminated in the helmet, and rose to the surface of the water; one was for inhaling, and terminated in an ivory mouth-piece, the other was for the escape of foul air. The body was kept down by weights.

      Another method of supplying air to the apparatus was used by Mr. Tonkin in 1804. This consisted in the application of a bellows or pump, until the elastic force of the air was equal to the pressure of the water, the foul air being allowed to escape into the water through a valve, or conducted to the surface by a pipe303.]

      COLOURED GLASS. – ARTIFICIAL GEMS

      It is probable that there was no great interval between the discovery of the art of making glass, and that of giving it different colours. When the substance of which it is formed contains, by accident, any metallic particles, the glass assumes some tint; and this happens oftener than is wished; nay, a considerable degree of foresight is necessary to produce glass perfectly colourless; and I am of opinion that this skill has not been attained till a late period in the progress of the art. Even in Pliny’s time the highest value was set upon glass entirely free from colour, and transparent, or, as it was called, crystal304. From the different colours which glass acquired of itself, it was easy to conceive the idea of giving it the tinge of some precious stone: and this art, in ancient times, was carried to a very great extent. Proofs of this may be found in Pliny, who, besides others, mentions artificial hyacinths, sapphires, and that black glass which approached very near to the obsidian stone, and which in more than one place he calls gemmæ vitreæ305. Trebellius Pollio relates in how whimsical a manner Gallienus punished a cheat who had sold to his wife a piece of glass for a jewel306: and Tertullian ridicules the folly of paying as dear for coloured glass as for real pearls. The glass-houses at Alexandria were celebrated among the ancients for the skill and ingenuity of the workmen employed in them. From these, the Romans, who did not acquire a knowledge of that art till a late period, procured for a long time all their glass ware. The learned author of Recherches sur les Égyptiens et les Chinois, in the end of his first volume, relates more of these glass-houses than I know where to find in the works of the ancients; but it is certain that coloured glass was made even in those early ages. The emperor Adrian received as a present from an Egyptian priest, several glass cups which sparkled with colours of every kind, and which, as costly wares, he ordered to be used only on grand festivals307. Strabo tells us, that a glass-maker in Alexandria informed him that an earth was found in Egypt, without which the valuable coloured glass could not be made308.

      Seneca, in his ninetieth epistle, in which he judges too philosophically, that is, with too little knowledge of the world, in regard to the value of labour, mentions one Democritus who had discovered the art of making artificial emeralds309; but in my opinion this discovery consisted in giving a green colour by cementation to the natural rock crystal: and this art I imagine was treated of in that book, the name of which Pliny, through an over-anxious care lest the deception should become common, does not mention310. For colouring crystal and glass, so as to resemble stones, Porta311, Neri312, and others have, in modern times, given directions which are, however, not much used, because the crystal is thereby liable to acquire so many flaws that it cannot be easily cut afterwards, though, as Neri assures us, these by attention may sometimes be avoided.

      It is worthy of remark, that in some collections of antiquities at Rome, there are pieces of coloured glass which were once used as jewels. In the Museum Victorium, for example, there are shown a chrysolite and an emerald, both of which are so well executed, that they are not only perfectly transparent and coloured throughout, but neither externally nor internally have the smallest blemish, which certainly could not be guarded against without great care and skill.

      What materials the ancients used for colouring glass, has not been told to us by any of their writers. It is, however, certain that metallic oxides only can be employed for that purpose, because these pigments withstand the heat of the glass furnaces; and it is highly probable that ferruginous earth, if not the sole, was at least the principal substance, by which not only all shades of red, violet, and yellow, but even a blue colour, could be communicated, as Professor Gmelin has shown313. Respecting the red, of which only I mean here to speak, there is the less doubt, as, at present, sometimes an artificial, and sometimes a natural, iron ochre is often employed for that purpose. For common works this is sufficient; but when pure clear glass, coloured strongly throughout with a beautiful lively red, free from flaws, and in somewhat large pieces, is required, iron is not fit, because its colour, by the continued heat


Скачать книгу

<p>299</p>

Brewster’s Edinburgh Encyclopædia, Art. Diving-bell.

<p>300</p>

Reports of the late John Smeaton, F.R.S., vol. iii. p. 279.

<p>301</p>

Phil. Trans. 1717 and 1721. The art of living under water, by Halley.

<p>302</p>

Martin’s Philosophia Britannica, vol. iii. p. 180.

<p>303</p>

For further information on this important subject the reader is referred to the article Diving-bell in the Encyclopædia Britannica and its Supplement, also the Encyclopædia Metropolitana, Brewster’s Edinburgh and the Penny Cyclopædia, Halley’s papers in the Phil. Trans. for 1716 and 1721, Triewald’s in the same for 1736, Healy in the Philosophical Magazine, vol. xv., and Leopold’s Theatrum Machinarum Hydraulicarum.

<p>304</p>

Lib. xxxvi. c. 26.

<p>305</p>

Lib. xxxv. c. 26. and lib. xxxvii. c. 9. The lapis obsidianus, which Obsidius first found in Ethiopia, and made known, is undoubtedly the same as that vulcanic glass which is sometimes called Icelandic agate, pumex vitreus, and by the Spaniards, who brought it from America and California, named galinace.

<p>306</p>

Historiæ Augustæ Scriptores, in vita Gallieni, cap. 12.

<p>307</p>

Ib. in Vopisc. vita Saturnini, c. 8.

<p>308</p>

Strabo, Amst. 1707, fol. lib. xvi. p. 1099. – Some consider the glass earth here mentioned as a mineral alkali that was really found in Egypt, and which served to make glass; but, as the author speaks expressly of coloured glass, I do not think that the above salt, without which no glass was then made, is what is meant; but rather a metallic oxide, such perhaps as ochre or manganese.

<p>309</p>

Sen. Op. Lipsii, p. 579.

<p>310</p>

Hist. Nat. lib. xxxvii. c. 12. A passage in Diodorus Siculus, lib. ii. c. 52, alludes, in my opinion, to this method of colouring by cementation.

<p>311</p>

Magia Naturalis. Franc. 1591, 8vo, p. 275.

<p>312</p>

Kunkel’s Ars Vitraria. Nur. 1743, 4to, pp. 98, 101.

<p>313</p>

Comment. Soc. Scient. Gotting. ii. p. 41.