Insectivorous Plants. Darwin Charles
I have never seen the aggregating action transmitted at nearly so slow a rate. Another plant was left for 2 hrs. in carbonic acid, but was then exposed for 20 m. to the open air, during which time the leaves, being of a red colour, would have absorbed some oxygen. One of them, as well as a fresh leaf for comparison, were now immersed in the same solution as before. The former were looked at repeatedly, and after an interval of 65 m. a few spheres of protoplasm were first observed in the cells close beneath the glands, but only in two or three of the longer tentacles. After 3 hrs. the aggregation had travelled down the pedicels of a few of the tentacles for a length equal to that of the glands. On the other hand, in the fresh leaf similarly treated, aggregation was plain in many of the tentacles after 15 m.; after 65 m. it had extended down the pedicels for four, five, or more times the lengths of the glands; and after 3 hrs. the cells of all the tentacles were affected for one-third or one-half of their entire lengths. Hence there can be no doubt that the exposure of leaves to carbonic acid either stops for a time the process of aggregation, or checks the transmission of the proper influence when the glands are subsequently excited by carbonate of ammonia; and this substance acts more promptly and energetically than any other. It is known that the protoplasm of plants exhibits its spontaneous movements only as long as it is in an oxygenated condition; and so it is with the white corpuscles of the blood, only as long as they receive oxygen from the red corpuscles;9 but the cases above given are somewhat different, as they relate to the delay in the generation or aggregation of the masses of protoplasm by the exclusion of oxygen.
Summary and Concluding Remarks. – The process of aggregation is independent of the inflection of the tentacles and of increased secretion from the glands. It commences within the glands, whether these have been directly excited, or indirectly by a stimulus received from other glands. In both cases the process is transmitted from cell to cell down the whole length of the tentacles, being arrested for a short time at each transverse partition. With pale-coloured leaves the first change which is perceptible, but only under a high power, is the appearance of the finest granules in the fluid within the cells, making it slightly cloudy. These granules soon aggregate into small globular masses. I have seen a cloud of this kind appear in 10 s. after a drop of a solution of carbonate of ammonia had been given to a gland. With dark red leaves the first visible change often is the conversion of the outer layer of the fluid within the cells into bag-like masses. The aggregated masses, however they may have been developed, incessantly change their forms and positions. They are not filled with fluid, but are solid to their centres. Ultimately the colourless granules in the protoplasm which flows round the walls coalesce with the central spheres or masses; but there is still a current of limpid fluid flowing within the cells. As soon as the tentacles fully re-expand, the aggregated masses are redissolved, and the cells become filled with homogeneous purple fluid, as they were at first. The process of redissolution commences at the bases of the tentacles, thence proceeding upwards to the glands; and, therefore, in a reversed direction to that of aggregation.
Aggregation is excited by the most diversified causes, – by the glands being several times touched, – by the pressure of particles of any kind, and as these are supported by the dense secretion, they can hardly press on the glands with the weight of a millionth of a grain,10– by the tentacles being cut off close beneath the glands, – by the glands absorbing various fluids or matter dissolved out of certain bodies, – by exosmose, – and by a certain degree of heat. On the other hand, a temperature of about 150o Fahr. (65o.5 Cent.) does not excite aggregation; nor does the sudden crushing of a gland. If a cell is ruptured, neither the exuded matter nor that which still remains within the cell undergoes aggregation when carbonate of ammonia is added. A very strong solution of this salt and rather large bits of raw meat prevent the aggregated masses being well developed. From these facts we may conclude that the protoplasmic fluid within a cell does not become aggregated unless it be in a living state, and only imperfectly if the cell has been injured. We have also seen that the fluid must be in an oxygenated state, in order that the process of aggregation should travel from cell to cell at the proper rate.
Various nitrogenous organic fluids and salts of ammonia induce aggregation, but in different degrees and at very different rates. Carbonate of ammonia is the most powerful of all known substances; the absorption of 1/134400 of a grain (.000482 mg.) by a gland suffices to cause all the cells of the same tentacle to become aggregated. The first effect of the carbonate and of certain other salts of ammonia, as well as of some other fluids, is the darkening or blackening of the glands. This follows even from long immersion in cold distilled water. It apparently depends in chief part on the strong aggregation of their cell-contents, which thus become opaque, and do not reflect light. Some other fluids render the glands of a brighter red; whilst certain acids, though much diluted, the poison of the cobra-snake, &c., make the glands perfectly white and opaque; and this seems to depend on the coagulation of their contents without any aggregation. Nevertheless, before being thus affected, they are able, at least in some cases, to excite aggregation in their own tentacles.
That the central glands, if irritated, send centrifugally some influence to the exterior glands, causing them to send back a centripetal influence inducing aggregation, is perhaps the most interesting fact given in this chapter. But the whole process of aggregation is in itself a striking phenomenon. Whenever the peripheral extremity of a nerve is touched or pressed, and a sensation is felt, it is believed that an invisible molecular change is sent from one end of the nerve to the other; but when a gland of Drosera is repeatedly touched or gently pressed, we can actually see a molecular change proceeding from the gland down the tentacle; though this change is probably of a very different nature from that in a nerve. Finally, as so many and such widely different causes excite aggregation, it would appear that the living matter within the gland-cells is in so unstable a condition that almost any disturbance suffices to change its molecular nature, as in the case of certain chemical compounds. And this change in the glands, whether excited directly, or indirectly by a stimulus received from other glands, is transmitted from cell to cell, causing granules of protoplasm either to be actually generated in the previously limpid fluid or to coalesce and thus to become visible.
Supplementary Observations on the Process of Aggregation in the Roots of Plants.
It will hereafter be seen that a weak solution of the carbonate of ammonia induces aggregation in the cells of the roots of Drosera; and this led me to make a few trials on the roots of other plants. I dug up in the latter part of October the first weed which I met with, viz. Euphorbia peplus, being care- ful not to injure the roots; these were washed and placed in a little solution of one part of carbonate of ammonia to 146 of water. In less than one minute I saw a cloud travelling from cell to cell up the roots, with wonderful rapidity. After from 8 m. to 9 m. the fine granules, which caused this cloudy appearance, became aggregated towards the extremities of the roots into quadrangular masses of brown matter; and some of these soon changed their forms and became spherical. Some of the cells, however, remained unaffected. I repeated the experiment with another plant of the same species, but before I could get the specimen into focus under the microscope, clouds of granules and quadrangular masses of reddish and brown matter were formed, and had run far up all the roots. A fresh root was now left for 18 hrs. in a drachm of a solution of one part of the carbonate to 437 of water, so that it received 1/8 of a grain, or 2.024 mg. When examined, the cells of all the roots throughout their whole length contained aggregated masses of reddish and brown matter. Before making these experiments, several roots were closely examined, and not a trace of the cloudy appearance or of the granular masses could be seen in any of them. Roots were also immersed for 35 m. in a solution of one part of carbonate of potash to 218 of water; but this salt produced no effect.
I may here add that thin slices of the stem of the Euphorbia were placed in the same solution, and the cells which were green instantly became cloudy, whilst others which were before colourless were clouded with brown, owing to the formation of numerous granules of this tint. I have also seen with various kinds of leaves, left for some time in a solution of carbonate of ammonia, that the grains of chlorophyll ran together and partially coalesced; and this seems to be a form of aggregation.
Plants of duck-weed (Lemna) were left for between 30 m. and 45 m. in a solution of one part of this same salt to 146 of water, and three of their roots were then examined. In two of them, all the cells which
9
With respect to plants, Sachs, 'Trait de Bot.' 3rd edit., 1874, p. 864. On blood corpuscles, see 'Quarterly Journal of Microscopical Science,' April 1874, p. 185.'
10
According to Hofmeister (as quoted by Sachs, 'Trait de Bot.' 1874, p. 958), very slight pressure on the cell-membrane arrests immediately the movements of the protoplasm, and even determines its separation from the walls. But the process of aggregation is a different phenomenon, as it relates to the contents of the cells, and only secondarily to the layer of protoplasm which flows along the walls; though no doubt the effects of pressure or of a touch on the outside must be transmitted through this layer.