Insectivorous Plants. Darwin Charles

Insectivorous Plants - Darwin Charles


Скачать книгу
out of the many glands on a leaf, which had been immersed in water raised to 156o (68o.8 Cent.), escaped being rendered porcellanous;14 and the protoplasm in the cells close beneath these glands underwent some slight, though imperfect, degree of aggregation.

      Finally, it is a remarkable fact that the leaves of Drosera rotundifolia, which flourishes on bleak upland moors throughout Great Britain, and exists (Hooker) within the Arctic Circle, should be able to withstand for even a short time immersion in water heated to a temperature of 145o.

      It may be worth adding that immersion in cold water does not cause any inflection: I suddenly placed four leaves, taken from plants which had been kept for several days at a high temperature, generally about 75o Fahr. (23o.8 Cent.), in water at 45o (7o.2 Cent.), but they were hardly at all affected; not so much as some other leaves from the same plants, which were at the same time immersed in water at 75o; for these became in a slight degree inflected.

      CHAPTER V

THE EFFECTS OF NON-NITROGENOUS AND NITROGENOUS ORGANIC FLUIDS ON THE LEAVES

      Non-nitrogenous fluids – Solutions of gum arabic – Sugar – Starch – Diluted alcohol – Olive oil – Infusion and decoction of tea – Nitrogenous fluids – Milk – Urine – Liquid albumen – Infusion of raw meat – Impure mucus – Saliva – Solution of isinglass – Difference in the action of these two sets of fluids – Decoction of green peas – Decoction and infusion of cabbage – Decoction of grass leaves.

      WHEN, in 1860, I first observed Drosera, and was led to believe that the leaves absorbed nutritious matter from the insects which they captured, it seemed to me a good plan to make some preliminary trials with a few common fluids, containing and not containing nitrogenous matter; and the results are worth giving.

      In all the following cases a drop was allowed to fall from the same pointed instrument on the centre of the leaf; and by repeated trials one of these drops was ascertained to be on an average very nearly half a minim, or 1/960 of a fluid ounce, or .0295 ml. But these measurements obviously do not pretend to any strict accuracy; moreover, the drops of the viscid fluids were plainly larger than those of water. Only one leaf on the same plant was tried, and the plants were collected from two distant localities. The experiments were made during August and September. In judging of the effects, one caution is necessary: if a drop of any adhesive fluid is placed on an old or feeble leaf, the glands of which have ceased to secrete copiously, the drop sometimes dries up, especially if the plant is kept in a room, and some of the central and submarginal tentacles are thus drawn together, giving to them the false appearance of having become inflected. This sometimes occurs with water, as it is rendered adhesive by mingling with the viscid secretion. Hence the only safe criterion, and to this alone I have trusted, is the bending inwards of the exterior tentacles, which have not been touched by the fluid, or at most only at their bases. In this case the movement is wholly due to the central glands having been stimulated by the fluid, and transmitting a motor impulse to the exterior tentacles. The blade of the leaf likewise often curves inwards, in the same manner as when an insect or bit of meat is placed on the disc. This latter movement is never caused, as far as I have seen, by the mere drying up of an adhesive fluid and the consequent drawing together of the tentacles.

      First for the non-nitrogenous fluids. As a preliminary trial, drops of distilled water were placed on between thirty and forty leaves, and no effect whatever was produced; nevertheless, in some other and rare cases, a few tentacles became for a short time inflected; but this may have been caused by the glands having been accidentally touched in getting the leaves into a proper position. That water should produce no effect might have been anticipated, as otherwise the leaves would have been excited into movement by every shower of rain.

      [Gum arabic. – Solutions of four degrees of strength were made; one of six grains to the ounce of water (one part to 73); a second rather stronger, yet very thin; a third moderately thick, and a fourth so thick that it would only just drop from a pointed instrument. These were tried on fourteen leaves; the drops being left on the discs from 24 hrs. to 44 hrs.; generally about 30 hrs. Inflection was never thus caused. It is necessary to try pure gum arabic, for a friend tried a solution bought ready prepared, and this caused the tentacles to bend; but he afterwards ascertained that it contained much animal matter, probably glue.

      Sugar. – Drops of a solution of white sugar of three strengths (the weakest containing one part of sugar to 73 of water) were left on fourteen leaves from 32 hrs. to 48 hrs.; but no effect was produced.

      Starch. – A mixture about as thick as cream was dropped on six leaves and left on them for 30 hrs., no effect being produced. I am surprised at this fact, as I believe that the starch of commerce generally contains a trace of gluten, and this nitrogenous substance causes inflection, as we shall see in the next chapter.

      Alcohol, Diluted. – One part of alcohol was added to seven of water, and the usual drops were placed on the discs of three leaves. No inflection ensued in the course of 48 hrs. To ascertain whether these leaves had been at all injured, bits of meat were placed on them, and after 24 hrs. they were closely inflected. I also put drops of sherry-wine on three other leaves; no inflection was caused, though two of them seemed somewhat injured. We shall hereafter see that cut off leaves immersed in diluted alcohol of the above strength do not become inflected.

      Olive Oil. – drops were placed on the discs of eleven leaves, and no effect was produced in from 24 hrs. to 48 hrs. Four of these leaves were then tested by bits of meat on their discs, and three of them were found after 24 hrs. with all their tentacles and blades closely inflected, whilst the fourth had only a few tentacles inflected. It will, however, be shown in a future place, that cut off leaves immersed in olive oil are powerfully affected.

      Infusion and Decoction of Tea. – Drops of a strong infusion and decoction, as well as of a rather weak decoction, of tea were placed on ten leaves, none of which became inflected. I afterwards tested three of them by adding bits of meat to the drops which still remained on their discs, and when I examined them after 24 hrs. they were closely inflected. The chemical principle of tea, namely theine, was subsequently tried and produced no effect. The albuminous matter which the leaves must originally have contained, no doubt, had been rendered insoluble by their having been completely dried.]

      We thus see that, excluding the experiments with water, sixty-one leaves were tried with drops of the above-named non-nitrogenous fluids; and the tentacles were not in a single case inflected.

      [With respect to nitrogenous fluids, the first which came to hand were tried. The experiments were made at the same time and in exactly the same manner as the foregoing. As it was immediately evident that these fluids produced a great effect, I neglected in most cases to record how soon the tentacles became inflected. But this always occurred in less than 24 hrs.; whilst the drops of non-nitrogenous fluids which produced no effect were observed in every case during a considerably longer period.

      Milk. – Drops were placed on sixteen leaves, and the tentacles of all, as well as the blades of several, soon became greatly inflected. The periods were recorded in only three cases, namely, with leaves on which unusually small drops had been placed. Their tentacles were somewhat inflected in 45 m.; and after 7 hrs. 45 m. the blades of two were so much curved inwards that they formed little cups enclosing the drops. These leaves re-expanded on the third day. On another occasion the blade of a leaf was much inflected in 5 hrs. after a drop of milk had been placed on it.

      Human Urine. – Drops were placed on twelve leaves, and the tentacles of all, with a single exception, became greatly inflected. Owing, I presume, to differences in the chemical nature of the urine on different occasions, the time required for the movements of the tentacles varied much, but was always effected in under 24 hrs. In two instances I recorded that all the exterior tentacles were completely inflected in 17 hrs., but not the blade of the leaf. In another case the edges of a leaf, after 25 hrs. 30 m., became so strongly inflected that it was converted into a cup. The power of urine does not lie in the urea, which, as we shall hereafter see, is inoperative.

      Albumen (fresh from a hen's egg), placed on seven leaves, caused the tentacles of six of them to be well inflected. In one case the edge of the leaf itself became much curled in after 20 hrs. The one leaf which was unaffected remained so for


Скачать книгу

<p>14</p>

As the opacity and porcelain-like appearance of the glands is probably due to the coagulation of the albumen, I may add, on the authority of Dr. Burdon Sanderson, that albumen coagulates at about 155o, but, in presence of acids, the temperature of coagulation is lower. The leaves of Drosera contain an acid, and perhaps a difference in the amount contained may account for the slight differences in the results above recorded.

It appears that cold-blooded animals are, as might have been expected, far more sensitive to an increase of temperature than is Drosera. Thus, as I hear from Dr. Burdon Sanderson, a frog begins to be distressed in water at a temperature of only 85o Fahr. At 95o the muscles become rigid, and the animal dies in a stiffened condition.