Fragments of Earth Lore: Sketches & Addresses Geological and Geographical. Geikie James
and not only so, but they also piece on in the same way to the great belt of similar strata that stretches from sea to sea across the whole breadth of Scotland. Indeed, we may observe in the Cheviot district how long and massive promontories of greywacké jut out from that great belt, and extend often for miles into the areas that are covered with younger strata, as, for example, in the Brockilaw and Wolfelee Hills. A generalised section across the greywacké regions of the Cheviot Hills would therefore present the appearances shown in the annexed diagram, in which G represents the basement beds, I the igneous rocks, and C the red sandstones, etc.
Throughout the whole of the district under review the bottom beds are observed to dip at a high angle – the strata in many places being actually vertical – and the edges or crops of the strata run somewhat persistently in one direction, namely, from south by west to north by east; or, as a geologist would express it, the beds have an approximately south-west and north-east “strike.” Now as the dip is sometimes to north-west and sometimes to south-east, it is evident that the rocks have been folded up in a series of rapid convolutions, and that some of the beds must be often repeated.
From the character of the fossils which the bottom beds have yielded we learn that the strata belong to that division of past time which is known as the Silurian age. These fossils appear to be of infrequent occurrence, and the creatures of which they are the relics occupied rather a humble place in the scale of being. They are called graptolites (from their resemblance to pens), an extinct group of hydroid zoophytes, apparently resembling the sertularians of our own seas.
The general appearance of the Silurian strata of the Cheviots is indicative of deposition in comparatively quiet water, but how deep that water was one cannot say. Upon the whole, the beds look not unlike the sediments that gather in calm reaches of the sea, such as estuaries, betokening the presence of some not distant land from which fine mud and sand were washed down. Another proof that some of the strata at all events were accumulated not far from a shore-line, is found in certain coarse bands of grit and pebbles, which are not likely to have been formed in deep water. This evidence, however, cannot be considered decisive, and in the present state of our knowledge all that we can assert with anything like confidence is simply this: – That during the deposition of the Silurian strata the whole of the Cheviot area lay under water – existed, in short, as a muddy sea-bottom, in the slime of which flourished here and there, in favourable spots, those minute hydroid animals called graptolites.
Between the deposition of the Silurian and the formation of the rocks that come next in order a long interval elapsed, during which the mud, sand, and grit that gathered on the floor of the ancient sea were hardened into solid masses, and eventually squeezed together into great folds and undulations. It has already been pointed out that these changes could hardly have been effected save under extreme pressure, and this consideration leads us to infer that a great thickness of strata has been removed entirely from the Cheviot district, so as to leave no trace of its former existence. Long before the deposition of the younger strata that now rest upon and conceal the Silurian rocks, the action of the denuding forces – the sea, frosts, rain, and rivers – had succeeded in not only sweeping gradually away the strata underneath which the bottom beds were folded, but in deeply scarping and carving these bottom beds themselves. Can we form any reasonable conjecture as to the geological age of the strata underneath which the bottom beds of the Cheviots were folded, and which, as we have seen, had entirely disappeared before the younger rocks of the district were accumulated? Well, it is obvious that the missing strata must have been of later formation than the bottom beds, and it is equally evident that they must have been of much more ancient date than the igneous rocks of the Cheviot Hills. Now, as we shall afterwards see, these igneous rocks belong to the Old Red Sandstone age, that is to say, to the age that succeeded the Silurian. How is it then, if the bottom beds be really of Silurian and the igneous rocks of Old Red Sandstone age, that a gap is said to exist between them? The explanation of this apparent contradiction is not far to seek. When we compare the fossils that occur in the Silurian strata of the Cheviot Hills and the districts to the west, with the organic remains disinterred from similar strata elsewhere, as in Wales for example, we find that the bottom beds of the Cheviots were in all probability accumulated at approximately the same time as certain strata that occur in the middle division of the Upper Silurian. In Wales and in Cumberland the strata that approximate in age to the Silurian of the Cheviots are covered by younger strata belonging to the same formation which reach a thickness of several thousand feet. It may quite well be, therefore, that the succession of Silurian strata in the Cheviots was at one time more complete than it is now. The upper portions of the formation which are so well developed in Wales and Cumberland, and which are likewise represented to a small extent in Scotland, had in all probability their equivalents in what are our border districts. In other words, there are good grounds for believing that the existing Silurian rocks of the Cheviots were in times preceding the Old Red Sandstone age covered with younger strata belonging to the same great system. The missing Silurian strata of the Cheviots may have attained a thickness of several thousand feet, and underneath such a mass of solid rock the lower-lying strata might well have been consolidated and subsequently squeezed into folds.
We now pass on to consider the next chapter in the geological history of the Cheviot Hills. As we proceed in our investigations it will be noticed that the evidence becomes more abundant, and we are thus enabled to build up the story of the past with more confidence, and with fuller details. For it is with geological history as with human records – the further back we go in time the scantier do the facts become. The rocks upon which Nature writes her own history are palimpsests, on which the later writing is ever the most easily deciphered. Nay, she cannot compile her newer records without first destroying some of those compiled in earlier times. The sediments accumulating in modern lake and sea are but the materials derived from the degradation of the rocks we see around us, just as these in like manner have originated from the demolition of yet older strata. Thus the further we trace back the history of our earth, the more fragmentary must we expect the evidence to be; and conversely, the nearer we approach to the present condition of things the more abundant and satisfactory must the records become. Accordingly, we find that the igneous rocks of the Cheviot Hills tell us considerably more than the ancient Silurian deposits upon which they rest. The surface of the latter appears to be somewhat irregular underneath the igneous rocks, showing that hills and valleys, or an undulating table-land, existed in the Cheviot district prior to the appearance of the younger formation. But before we attempt to summarise the history of that formation, it is necessary to give some description, however short, of the rocks that compose it.
These consist chiefly of numerous varieties of a rock called porphyrite by geologists, piled in more or less irregular beds, one on top of another, in a somewhat confused manner. The colour of the freshly fractured rocks is very variable, being usually some shade of blue or purple; but pink, red, brown, greenish, and dark grey or almost black varieties also occur. Some of the rocks are finely crystalline; others, again, are much coarser, while many are compact, or nearly so, a lens being required to detect a crystalline texture. The mineral called felspar is usually scattered more or less abundantly through the matrix or base, which itself is composed principally of felspathic materials. Besides distinct scattered crystals of felspar, other minerals often occur in a similar manner; mica and hornblende being the commonest. Occasionally the rocks contain numerous circular, oval, or flattened cavities, which are sometimes so abundant as to give the appearance of a kind of coarse slag to the porphyrite. These little cavities, however, are usually filled up with mineral matter – such as calcspar, calcedony, jasper, quartz, etc. Sometimes also cracks, crannies, and crevices of some size have been sealed up with similar minerals. Now nearly all these appearances are specially characteristic of rocks which have at one time been in a state of igneous fusion; nor can there be any doubt that the Cheviot porphyrites are merely solidified lava-beds, which have been poured out from the bowels of the earth. In modern lavas we may notice not only a crystalline texture, but frequently also we observe those in our porphyrites. Such cavities are due to the expansive force of the vapours imprisoned in the molten mass at the time of eruption. They form chiefly towards the upper surface of a lava stream, and are often drawn out or flattened in the direction in which the lava flows. Thus a stream of lava, as it creeps on its way, becomes slaggy and scoriaceous or cindery above and in front, and as the molten mass within continues to flow, the slags and cinders that cover its face tumble down before