On the Philosophy of Discovery, Chapters Historical and Critical. William Whewell
attempts in some measure that other and true way, of gradual generalization; but this it does with small profit; for the intellect, except it be regulated and aided, is a faculty of unequal operation, and altogether unapt to master the obscurity of things."
The profound and searching wisdom of these remarks appears more and more, as we apply them to the various attempts which men have made to obtain knowledge; when they begin with the contemplation of a few facts, and pursue their speculations, as upon most subjects they have hitherto generally done; for almost all such attempts have led immediately to some process of illicit generalization, which introduces an interminable course of controversy. In the physical sciences, however, we have the further inestimable advantage of seeing the other side of the contrast exemplified: for many of them, as our inductive Tables show us, have gone on according to the most rigorous conditions of gradual and successive generalization; and in consequence of this circumstance in their constitution, possess, in each part of their structure, a solid truth, which is always ready to stand the severest tests of reasoning and experiment.
We see how justly and clearly Bacon judged concerning the mode in which facts are to be employed in the construction of science. This, indeed, has ever been deemed his great merit: insomuch that many persons appear to apprehend the main substance of his doctrine to reside in the maxim that facts of observation, and such facts alone, are the essential elements of all true science.
(V.) 10. Ideas are necessary.—Yet we have endeavoured to establish the doctrine that facts are but one of two ingredients of knowledge both equally necessary;—that Ideas are no less indispensable than facts themselves; and that except these be duly unfolded and applied, facts are collected in vain. Has Bacon then neglected this great portion of his subject? Has he been led by some partiality of view, or some peculiarity of circumstances, to leave this curious and essential element of science in its pristine obscurity? Was he unaware of its interest and importance?
We may reply that Bacon's philosophy, in its effect upon his readers in general, does not give due weight or due attention to the ideal element of our knowledge. He is considered as peculiarly and eminently the asserter of the value of experiment and observation. He is always understood to belong to the experiential, as opposed to the ideal school. He is held up in contrast to Plato and others who love to dwell upon that part of knowledge which has its origin in the intellect of man.
11. Nor can it be denied that Bacon has, in the finished part of his Novum Organon, put prominently forwards the necessary dependence of all our knowledge upon Experience, and said little of its dependence, equally necessary, upon the Conceptions which the intellect itself supplies. It will appear, however, on a close examination, that he was by no means insensible or careless of this internal element of all connected speculation. He held the balance, with no partial or feeble hand, between phenomena and ideas. He urged the Colligation of Facts, but he was not the less aware of the value of the Explication of Conceptions.
12. This appears plainly from some remarkable Aphorisms in the Novum Organon. Thus, in noticing the causes of the little progress then made by science173, he states this:—"In the current Notions, all is unsound, whether they be logical or physical. Substance, quality, action, passion, even being, are not good Conceptions; still less are heavy, light, dense, rare, moist, dry, generation, corruption, attraction, repulsion, element, matter, form, and others of that kind; all are fantastical and ill-defined." And in his attempt to exemplify his own system, he hesitates174 in accepting or rejecting the notions of elementary, celestial, rare, as belonging to fire, since, as he says, they are vague and ill-defined notions (notiones vagæ nec bene terminatæ). In that part of his work which appears to be completed, there is not, so far as I have noticed, any attempt to fix and define any notions thus complained of as loose and obscure. But yet such an undertaking appears to have formed part of his plan; and in the Abecedarium Naturæ175, which consists of the heads of various portions of his great scheme, marked by letters of the alphabet, we find the titles of a series of dissertations "On the Conditions of Being," which must have had for their object the elucidation of divers Notions essential to science, and which would have been contributions to the Explication of Conceptions, such as we have attempted in a former part of this work. Thus some of the subjects of these dissertations are;—Of Much and Little;—Of Durable and Transitory;—Of Natural and Monstrous;—Of Natural and Artificial. When the philosopher of induction came to discuss these, considered as conditions of existence, he could not do otherwise than develope, limit, methodize, and define the Ideas involved in these Notions, so as to make them consistent with themselves, and a fit basis of demonstrative reasoning. His task would have been of the same nature as ours has been, in that part of this work which treats of the Fundamental Ideas of the various classes of sciences.
13. Thus Bacon, in his speculative philosophy, took firmly hold of both the handles of science; and if he had completed his scheme, would probably have given due attention to Ideas, no less than to Facts, as an element of our knowledge; while in his view of the general method of ascending from facts to principles, he displayed a sagacity truly wonderful. But we cannot be surprised, that in attempting to exemplify the method which he recommended, he should have failed. For the method could be exemplified only by some important discovery in physical science; and great discoveries, even with the most perfect methods, do not come at command. Moreover, although the general structure of his scheme was correct, the precise import of some of its details could hardly be understood, till the actual progress of science had made men somewhat familiar with the kind of steps which it included.
(VI.) 14. Bacon's Example.—Accordingly, Bacon's Inquisition into the Nature of Heat, which is given in the Second Book of the Novum Organon as an example of the mode of interrogating Nature, cannot be looked upon otherwise than as a complete failure. This will be evident if we consider that, although the exact nature of heat is still an obscure and controverted matter, the science of Heat now consists of many important truths; and that to none of these truths is there any approximation in Bacon's essay. From his process he arrives at this, as the "forma or true definition" of heat;—"that it is an expansive, restrained motion, modified in certain ways, and exerted in the smaller particles of the body." But the steps by which the science of Heat really advanced were (as may be seen in the history176 of the subject) these;—The discovery of a measure of heat or temperature (the thermometer); the establishment of the laws of conduction and radiation; of the laws of specific heat, latent heat, and the like. Such steps have led to Ampère's hypothesis177, that heat consists in the vibrations of an imponderable fluid; and to Laplace's hypothesis, that temperature consists in the internal radiation of such a fluid. These hypotheses cannot yet be said to be even probable; but at least they are so modified as to include some of the preceding laws which are firmly established; whereas Bacon's hypothetical motion includes no laws of phenomena, explains no process, and is indeed itself an example of illicit generalization.
15. One main ground of Bacon's ill fortune in this undertaking appears to be, that he was not aware of an important maxim of inductive science, that we must first obtain the measure and ascertain the laws of phenomena, before we endeavour to discover their causes. The whole history of thermotics up to the present time has been occupied with the former step, and the task is not yet completed: it is no wonder, therefore, that Bacon failed entirely, when he so prematurely attempted the second. His sagacity had taught him that the progress of science must be gradual; but it had not led him to judge adequately how gradual it must be, nor of what different kinds of inquiries, taken in due order, it must needs consist, in order to obtain success.
Another mistake, which could not fail to render it unlikely that Bacon should really exemplify his precepts by any actual advance in science, was, that he did not justly appreciate the sagacity, the inventive genius, which all discovery requires. He conceived that he could supersede the necessity of such peculiar endowments. "Our method of discovery in science," he says
173
1 Ax. 15.
174
175
176
177