The Intention Experiment: Use Your Thoughts to Change the World. Lynne McTaggart
aloft a tiny lantern on cue.14 Chinese colleagues of Popp’s who had tried positioning two samples of the algae so that they could ‘see’ each other through a shutter also found that the light emissions from each sample were synchronous. The researchers concluded that they had witnessed a highly sophisticated means of communication. There was no doubt that the two samples were signalling to each other.15
These organisms also appeared to be registering light from other species, although the greatest synchronicities occurred between members of the same species.16 Once the light waves of one organism were initially absorbed by another organism, the first organism’s light would begin trading information in synchrony.17 Living things also appeared to communicate information with their surroundings. Bacteria absorbed light from their nutritional media: the more bacteria present, Popp found, the greater the absorption of light.18 Even the white and yolk of an egg appear to communicate with the shell.19
This communication carries on, even if an organism is cut into pieces. Gary Schwartz cut up a batch of string beans, placed them between 1 millimetre and 10 millimetres apart, and then used the NSF CCD camera he had borrowed to take a series of photographs of the sections. Using software to enhance the light between the beans, he discovered so much light between the sections that it appeared as though the bean were whole again. Even though the string beans had been severed, the individual sections carried on their communication to the rest of the vegetable.20 This may be the mechanism accounting for the feeling described by amputees with phantom limb sensations. The light of the body still communicates with the energetic ‘footprint’ of the amputated limb.
Like Backster, Popp discovered that living things are exquisitely in tune with their environment through these light emissions. One of Popp’s colleagues, Professor Wolfgang Klimek, the head of the Ministry of Research for the German government, devised an ingenious experiment to examine whether creatures such as algae were aware of past disturbances in their environment. He prepared two containers of seawater, and shook one of them. After 10 minutes, when the water in the shaken container had settled down, he placed samples of dinoflagellates in the two vessels. Those algae exposed to the shaken water suddenly increased their photon emissions – a sign of stress. The algae appeared to be aware of the slightest change in their environment – even a historical change – and responded with alarm.21
Another of Popp’s colleagues, Eduard Van Wijk, a Dutch psychologist, wondered how far this influence extended. Did a living thing register information from the entire environment, and not simply between two communicating entities? When a healer sends out healing intention, for instance, how far does his field of influence extend? Would he only affect his target, or would his aim have a shotgun effect, affecting other living organisms around the target?
Van Wijk placed a jar of Acetabularia acetabulum, another simple algae, near a healer and his patient, then measured the photon emissions of the algae during healing sessions and periods of rest. After analysing the data, he discovered remarkable alterations in the photon count of the algae. The quality of emissions significantly changed during the healing sessions, as though the algae were being bombarded with light. There also seemed to be changes in the rhythm of the emissions, as though the algae had become attuned to a stronger source of light.
During his initial research, Popp had discovered a strange reaction to light by a living thing. If he shone a bright light on an organism, after a certain delay, the organism would shine more brightly itself with extra photons, as if it were rejecting any excess. Popp called this phenomenon ‘delayed luminescence’, and assumed it was a corrective device to help the organism maintain its level of light at a delicate equilibrium. In Van Wijk’s experiment, the photon emissions of algae showed highly significant shifts from normal, when plotted on a graph. Van Wijk had generated some of the first evidence that healing light may affect anything in its path.22
Gary Schwartz’s associate Melinda Connor then demonstrated that intention has a direct effect on this light. For her study she clipped leaves from geranium plants, carefully matching them in pairs for size, health, placement on the plant and access to light and close to identical photon emissions. She asked each of 20 master energy healers to send intentions to one of each pair of leaves, first to reduce emissions and then to increase them. In 29 of the 38 sessions designed to decrease emissions, the light was significantly lowered in the treatment leaves, and in 22 of the 38 trials intending to increase the light, the healers caused a significantly greater glow.23
Sometimes a physical jolt to the system triggers a shock of realization. For physicist Konstantin Korotkov, his insight resulted from a fall off a roof. It was the winter of 1976, and Korotkov, who was 24 at the time, had been celebrating a birthday with some friends. Korotkov liked to celebrate outside, whatever the weather. He and his friends had been drinking vodka on the roof. Korotkov was given to expansive gestures, and during a moment of gaiety, threw himself off the roof onto what he thought was a deep bed of snow, which he assumed would cushion his fall. But hidden beneath the snow lay hard stone. Korotkov broke his left leg and landed in the hospital for months.24
During his long recovery, Korotkov, a conventional professor of quantum physics at St Petersburg State Technical University in Russia, pondered on a lecture on Kirlian effects and healing that he had attended earlier that year. He had been so intrigued that he wondered if he could improve on what Kirlian claimed to be doing: capturing someone’s life energy on film.
Semyon Davidovich Kirlian was an engineer who had discovered in 1939 that photographing living things that had been exposed to a pulsed electromagnetic field would capture what many have termed the human ‘aura’. When any conductive object (like living tissue) is placed on a plate made of an insulating material, such as glass, and exposed to high-voltage, high-frequency electricity, a low current results that creates a corona discharge, a halo of coloured light around the object that can be captured on film. Kirlian claimed that the state of the aura reflected the person’s state of health; changes in the aura were evidence of disease or mental disturbance.
The Soviet scientific mainstream ignored Kirlian until the 1960s, when the Russian press discovered bioelectrography, as it came to be called, and hailed him as a great inventor. Kirlian photography suddenly became respectable, particularly in space research, and was championed by many Western scientists. Publication of Kirlian’s first study in 1964 further attracted the scientific community.25
Lying for months in his bed, Korotkov realized that if he was going to discover more about how to capture this mysterious light Kirlian claimed was so vital to health, he was going to have to give up his day job. He knew that the involvement of a well-established quantum physicist such as himself would lend the technique scientific legitimacy and his technical ability might also help advance the technology. Perhaps he could even devise a means of depicting the light in real time.
After he got back up on his feet, Korotkov spent months developing a mechanism, which he called the Gas Discharge Visualization (GDV) technique, that made use of state-of-the-art optics, digitized television matrices and a powerful computer. Ordinarily, a living thing will dribble out the faintest pulse of photons, perceptible only to the most sensitive equipment in conditions of utter pitch black. As Korotkov realized, a better way to capture this light was to stir up photons by ‘evoking’, or stimulating them into an excited state so that they would shine millions of times