The Canterbury Puzzles, and Other Curious Problems. Dudeney Henry Ernest
not so prolix as to destroy all interest in the thing. I remember once propounding a problem that required something to be done in the "fewest possible straight lines," and a person who was either very clever or very foolish (I have never quite determined which) claimed to have solved it in only one straight line, because, as she said, "I have taken care to make all the others crooked!" Who could have anticipated such a quibble?
Then if you give a "crossing the river" puzzle, in which people have to be got over in a boat that will only hold a certain number or combination of persons, directly the would-be solver fails to master the difficulty he boldly introduces a rope to pull the boat across. You say that a rope is forbidden; and he then falls back on the use of a current in the stream. I once thought I had carefully excluded all such tricks in a particular puzzle of this class. But a sapient reader made all the people swim across without using the boat at all! Of course, some few puzzles are intended to be solved by some trick of this kind; and if there happens to be no solution without the trick it is perfectly legitimate. We have to use our best judgment as to whether a puzzle contains a catch or not; but we should never hastily assume it. To quibble over the conditions is the last resort of the defeated would-be solver.
Sometimes people will attempt to bewilder you by curious little twists in the meaning of words. A man recently propounded to me the old familiar problem, "A boy walks round a pole on which is a monkey, but as the boy walks the monkey turns on the pole so as to be always facing him on the opposite side. Does the boy go around the monkey?" I replied that if he would first give me his definition of "to go around" I would supply him with the answer. Of course, he demurred, so that he might catch me either way. I therefore said that, taking the words in their ordinary and correct meaning, most certainly the boy went around the monkey. As was expected, he retorted that it was not so, because he understood by "going around" a thing that you went in such a way as to see all sides of it. To this I made the obvious reply that consequently a blind man could not go around anything.
He then amended his definition by saying that the actual seeing all sides was not essential, but you went in such a way that, given sight, you could see all sides. Upon which it was suggested that consequently you could not walk around a man who had been shut up in a box! And so on. The whole thing is amusingly stupid, and if at the start you, very properly, decline to admit any but a simple and correct definition of "to go around," there is no puzzle left, and you prevent an idle, and often heated, argument.
When you have grasped your conditions, always see if you cannot simplify them, for a lot of confusion is got rid of in this way. Many people are puzzled over the old question of the man who, while pointing at a portrait, says, "Brothers and sisters have I none, but that man's father is my father's son." What relation did the man in the picture bear to the speaker? Here you simplify by saying that "my father's son" must be either "myself" or "my brother." But, since the speaker has no brother, it is clearly "myself." The statement simplified is thus nothing more than, "That man's father is myself," and it was obviously his son's portrait. Yet people fight over this question by the hour!
There are mysteries that have never been solved in many branches of Puzzledom. Let us consider a few in the world of numbers—little things the conditions of which a child can understand, though the greatest minds cannot master. Everybody has heard the remark, "It is as hard as squaring a circle," though many people have a very hazy notion of what it means. If you have a circle of given diameter and wish to find the side of a square that shall contain exactly the same area, you are confronted with the problem of squaring the circle. Well, it cannot be done with exactitude (though we can get an answer near enough for all practical purposes), because it is not possible to say in exact numbers what is the ratio of the diameter to the circumference. But it is only in recent times that it has been proved to be impossible, for it is one thing not to be able to perform a certain feat, but quite another to prove that it cannot be done. Only uninstructed cranks now waste their time in trying to square the circle.
Again, we can never measure exactly in numbers the diagonal of a square. If you have a window pane exactly a foot on every side, there is the distance from corner to corner staring you in the face, yet you can never say in exact numbers what is the length of that diagonal. The simple person will at once suggest that we might take our diagonal first, say an exact foot, and then construct our square. Yes, you can do this, but then you can never say exactly what is the length of the side. You can have it which way you like, but you cannot have it both ways.
All my readers know what a magic square is. The numbers 1 to 9 can be arranged in a square of nine cells, so that all the columns and rows and each of the diagonals will add up 15. It is quite easy; and there is only one way of doing it, for we do not count as different the arrangements obtained by merely turning round the square and reflecting it in a mirror. Now if we wish to make a magic square of the 16 numbers, 1 to 16, there are just 880 different ways of doing it, again not counting reversals and reflections. This has been finally proved of recent years. But how many magic squares may be formed with the 25 numbers, 1 to 25, nobody knows, and we shall have to extend our knowledge in certain directions before we can hope to solve the puzzle. But it is surprising to find that exactly 174,240 such squares may be formed of one particular restricted kind only—the bordered square, in which the inner square of nine cells is itself magic. And I have shown how this number may be at once doubled by merely converting every bordered square—by a simple rule—into a non-bordered one.
Then vain attempts have been made to construct a magic square by what is called a "knight's tour" over the chess-board, numbering each square that the knight visits in succession, 1, 2, 3, 4, etc.; and it has been done, with the exception of the two diagonals, which so far have baffled all efforts. But it is not certain that it cannot be done.
Though the contents of the present volume are in the main entirely original, some very few old friends will be found; but these will not, I trust, prove unwelcome in the new dress that they have received. The puzzles are of every degree of difficulty, and so varied in character that perhaps it is not too much to hope that every true puzzle lover will find ample material to interest—and possibly instruct. In some cases I have dealt with the methods of solution at considerable length, but at other times I have reluctantly felt obliged to restrict myself to giving the bare answers. Had the full solutions and proofs been given in the case of every puzzle, either half the problems would have had to be omitted, or the size of the book greatly increased. And the plan that I have adopted has its advantages, for it leaves scope for the mathematical enthusiast to work out his own analysis. Even in those cases where I have given a general formula for the solution of a puzzle, he will find great interest in verifying it for himself.
THE CANTERBURY PUZZLES
A Chance-gathered company of pilgrims, on their way to the shrine of Saint Thomas à Becket at Canterbury, met at the old Tabard Inn, later called the Talbot, in Southwark, and the host proposed that they should beguile the ride by each telling a tale to his fellow-pilgrims. This we all know was the origin of the immortal Canterbury Tales of our great fourteenth-century poet, Geoffrey Chaucer. Unfortunately, the tales were never completed, and perhaps that is why the quaint and curious "Canterbury Puzzles," devised and propounded by the same body of pilgrims, were not also recorded by the poet's pen. This is greatly to be regretted, since Chaucer, who, as Leland tells us, was an "ingenious mathematician" and the author of a learned treatise on the astrolabe, was peculiarly fitted for the propounding of problems. In presenting for the first time some of these old-world posers, I will not stop to explain the singular manner in which they came into my possession, but proceed at once, without unnecessary preamble, to give my readers an opportunity of solving them and testing their quality. There are certainly far more difficult puzzles extant, but difficulty and interest are two qualities of puzzledom that do not necessarily go together.
1.—The Reve's Puzzle
The Reve was a wily man and something of a scholar. As Chaucer tells us, "There was no auditor could of him win," and "there could no man bring him in arrear." The poet also noticed that "ever he rode the hindermost of the route." This he did that he might the better, without interruption, work out the fanciful problems and ideas that