The Notebooks of Leonardo Da Vinci. Complete. Leonardo da Vinci
you are drawing any object, remember, in comparing the grades of light in the illuminated portions, that the eye is often deceived by seeing things lighter than they are. And the reason lies in our comparing those parts with the contiguous parts. Since if two [separate] parts are in different grades of light and if the less bright is conterminous with a dark portion and the brighter is conterminous with a light background—as the sky or something equally bright—, then that which is less light, or I should say less radiant, will look the brighter and the brighter will seem the darker.
248
Of objects equally dark in themselves and situated at a considerable and equal distance, that will look the darkest which is farthest above the earth.
249
TO PROVE HOW IT IS THAT LUMINOUS BODIES APPEAR LARGER, AT A DISTANCE, THAN THEY ARE.
If you place two lighted candles side by side half a braccio apart, and go from them to a distance 200 braccia you will see that by the increased size of each they will appear as a single luminous body with the light of the two flames, one braccio wide.
TO PROVE HOW YOU MAY SEE THE REAL SIZE OF LUMINOUS BODIES.
If you wish to see the real size of these luminous bodies, take a very thin board and make in it a hole no bigger than the tag of a lace and place it as close to your eye as possible, so that when you look through this hole, at the said light, you can see a large space of air round it. Then by rapidly moving this board backwards and forwards before your eye you will see the light increase [and diminish].
Propositions on perspective of disappearance from MS. C. (250-262).
250
Of several bodies of equal size and equally distant from the eye, those will look the smallest which are against the lightest background.
Every visible object must be surrounded by light and shade. A perfectly spherical body surrounded by light and shade will appear to have one side larger than the other in proportion as one is more highly lighted than the other.
251
PERSPECTIVE.
No visible object can be well understood and comprehended by the human eye excepting from the difference of the background against which the edges of the object terminate and by which they are bounded, and no object will appear [to stand out] separate from that background so far as the outlines of its borders are concerned. The moon, though it is at a great distance from the sun, when, in an eclipse, it comes between our eyes and the sun, appears to the eyes of men to be close to the sun and affixed to it, because the sun is then the background to the moon.
252
A luminous body will appear more brilliant in proportion as it is surrounded by deeper shadow. [Footnote: The diagram which, in the original, is placed after this text, has no connection with it.]
253
The straight edges of a body will appear broken when they are conterminous with a dark space streaked with rays of light. [Footnote: Here again the diagrams in the original have no connection with the text.]
254
Of several bodies, all equally large and equally distant, that which is most brightly illuminated will appear to the eye nearest and largest. [Footnote: Here again the diagrams in the original have no connection with the text.]
255
If several luminous bodies are seen from a great distance although they are really separate they will appear united as one body.
256
If several objects in shadow, standing very close together, are seen against a bright background they will appear separated by wide intervals.
257
Of several bodies of equal size and tone, that which is farthest will appear the lightest and smallest.
258
Of several objects equal in size, brightness of background and length that which has the flattest surface will look the largest. A bar of iron equally thick throughout and of which half is red hot, affords an example, for the red hot part looks thicker than the rest.
259
Of several bodies of equal size and length, and alike in form and in depth of shade, that will appear smallest which is surrounded by the most luminous background.
260
DIFFERENT PORTIONS OF A WALL SURFACE WILL BE DARKER OR BRIGHTER IN PROPORTION AS THE LIGHT OR SHADOW FALLS ON THEM AT A LARGER ANGLE.
The foregoing proposition can be clearly proved in this way. Let us say that m q is the luminous body, then f g will be the opaque body; and let a e be the above-mentioned plane on which the said angles fall, showing [plainly] the nature and character of their bases. Then: a will be more luminous than b; the base of the angle a is larger than that of b and it therefore makes a greater angle which will be a m q; and the pyramid b p m will be narrower and m o c will be still finer, and so on by degrees, in proportion as they are nearer to e, the pyramids will become narrower and darker. That portion of the wall will be the darkest where the breadth of the pyramid of shadow is greater than the breadth of the pyramid of light.
At the point a the pyramid of light is equal in strength to the pyramid of shadow, because the base f g is equal to the base r f. At the point d the pyramid of light is narrower than the pyramid of shadow by so much as the base s f is less than the base f g.
Divide the foregoing proposition into two diagrams, one with the pyramids of light and shadow, the other with the pyramids of light [only].
261
Among shadows of equal depth those which are nearest to the eye will look least deep.
262
The more brilliant the light given by a luminous body, the deeper will the shadows be cast by the objects it illuminates.
V.
Theory of colours
Leonardo's theory of colours is even more intimately connected with his principles of light and shade than his Perspective of Disappearance and is in fact merely an appendix or supplement to those principles, as we gather from the titles to sections 264, 267_, and 276, while others again_ (Nos. 281, 282_) are headed_ Prospettiva.
A very few of these chapters are to be found in the oldest copies and editions of the Treatise on Painting, and although the material they afford is but meager and the connection between them but slight, we must still attribute to them a special theoretical value as well as practical utility—all the more so because our knowledge of the theory and use of colours at the time of the Renaissance is still extremely limited.
The reciprocal effects of colours on objects placed opposite each other (263-272).
263
OF PAINTING.
The hue of an illuminated object is affected by that of the luminous body.
264
OF SHADOW.
The surface of any opaque body is affected by the colour of surrounding objects.
265
A shadow is always affected by the colour of the surface on which it is cast.
266
An image produced in a mirror is affected by the colour of the mirror.
267
OF LIGHT AND SHADE.
Every