.
поставить перед собой несколько важных вопросов:
1. Исчерпывается ли творческое могущество разума созданием математической непрерывности?
Нет: труды Дюбуа-Реймона служат поразительным доказательством этого.
Известно, что математики различают бесконечно малые разных порядков, так что бесконечно малые второго порядка не только бесконечно малы в абсолютном смысле, но еще и являются таковыми по отношению к бесконечно малым первого порядка. Нетрудно представить себе бесконечно малые дробного и даже иррационального порядка, и, таким образом, мы снова находим ту последовательность математической непрерывности, которой посвящены предшествующие страницы. Более того: существуют такие бесконечно малые величины, которые бесконечно малы по отношению к бесконечно малым первого порядка и, напротив, бесконечно велики по отношению к бесконечно малым порядка 1 + ε, как бы ни было мало ε. Итак, вот еще новые члены, разместившиеся в нашем ряду; и если мне будет позволено вернуться к терминологии, которой я недавно держался и которая является достаточно удобной, хотя еще и не используется широко, я скажу, что этим создан вид непрерывности третьего порядка.
Легко было бы идти дальше, но это было бы бесполезной игрой ума; пришлось бы воображать себе одни символы без возможности их применения; на это никто не отважится. Даже непрерывность третьего порядка, к которой приводит рассмотрение различных порядков бесконечно малых, сама по себе является слишком мало полезной, чтобы приобрести право быть упоминаемой, и геометры рассматривают ее только просто как курьез. Разум пользуется своей творческой силой только тогда, когда опыт принуждает его к этому.
2. Раз мы обладаем понятием математической непрерывности, гарантированы ли мы от противоречий, аналогичных тем, которые положили начало этому понятию?
Нет; и я сейчас дам этому пример.
Надо быть очень сведущим, чтобы не считать очевидным, что каждая кривая имеет касательную: и в самом деле, если представлять себе эту кривую и некоторую прямую как две узкие полосы, то всегда можно расположить их так, что они будут иметь общую часть, не пересекаясь. Теперь вообразим себе, что ширина этих двух полос бесконечно уменьшается; существование их общей части будет всегда возможным, и в пределе, так сказать, две линии будут иметь общую точку, не пересекаясь, т. е. они будут взаимно касаться друг друга.
Геометр, рассуждающий таким образом, сделал бы – сознательно или нет – то же самое, что мы сделали раньше, желая доказать, что две пересекающиеся линии имеют общую точку; и его интуиция могла бы показаться такой же законной.
Между тем она его обманула бы. Можно доказать, что существуют кривые, не имеющие касательных, если эта кривая определена как аналитическая непрерывность второго порядка.
Несомненно, какая-нибудь уловка, аналогичная ранее изученным нами, позволила бы устранить противоречие, но так как оно встречается только в весьма исключительных случаях, то им и не занимаются. Вместо того чтобы