Теорема века. Мир Ñ Ñ‚Ð¾Ñ‡ÐºÐ¸ Ð·Ñ€ÐµÐ½Ð¸Ñ Ð¼Ð°Ñ‚ÐµÐ¼Ð°Ñ‚Ð¸ÐºÐ¸. Ðнри Пуанкаре
свет, я могу выделить узкую полосу спектра, но, как бы мала она ни была, она будет иметь известную ширину. Точно так же естественные монохроматические источники света дают нам линию тонкую, но не до бесконечности. Кто-нибудь мог бы предположить, что, подвергая экспериментальному изучению эти естественные источники, употребляя все более и более тонкие спектральные линии и в конце концов переходя, так сказать, к пределу, удалось бы достигнуть знания свойств строго монохроматического света. Но это было бы неточно. Пусть мы имеем два луча, испускаемые одним и тем же источником; пусть мы сначала поляризуем их во взаимно перпендикулярных плоскостях, затем приведем к одной плоскости поляризации и, наконец, заставим интерферировать. Интерференция произошла бы, если бы свет был строго монохроматичен; но при наших лишь приближенно монохроматических источниках интерференция не произойдет, как бы узка ни была взятая спектральная линия; чтобы явление имело место, она должна была бы быть во много миллионов раз уже, чем самые тонкие известные нам линии.
Таким образом, в этом случае переход к пределу обманул бы нас; здесь теоретическая мысль должна была идти впереди опыта, и если она успела в этом, то лишь потому, что инстинктивно руководилась соображением простоты.
Знание элементарного факта позволяет нам сформулировать задачу в виде уравнения; отсюда путем некоторых комбинаций остается только вывести заключение о сложном факте, подлежащем наблюдению и проверке. Это – не что иное, как интегрирование, которое уже составляет дело математика.
Можно задать вопрос: почему в физических науках обобщение так охотно принимает математическую форму? Причина этого теперь понятна: она состоит не только в том, что приходится выражать числовые законы, но и в том, что наблюдаемое явление есть результат суперпозиции большого числа элементарных явлений, подобных друг другу: значит, здесь вполне естественно появиться дифференциальным уравнениям.
Однако недостаточно, чтобы каждое элементарное явление подчинялось простым законам; все подлежащие сочетанию явления должны подчиняться одному и тому же закону. Только в этом случае математика может принести пользу, потому что она научит нас сочетать подобное с подобным. Цель ее – предсказывать результат сочетания, не проделывая его шаг за шагом на самом деле. Когда приходится повторять несколько раз одну и ту же операцию, математика позволяет нам избежать этого повторения и путем особого рода индукций заранее узнать нужный результат. Я изложил этот прием выше, в главе о математическом умозаключении. Однако для этого необходимо, чтобы все эти операции были подобны друг другу; в противном случае, очевидно, пришлось бы на деле выполнить их одну за другой и помощь математики оказалась бы ненужной.
Таким образом, возможность рождения математической физики обусловлена приблизительной однородностью изучаемого предмета. Это условие не выполняется в биологических науках: здесь мы не находим ни однородности,