The Power of Movement in Plants. Charles Darwin
seedling was placed in front and near a north-east window with a line joining the [page 16] two cotyledons parallel to the window. It was thus left the whole day so as to accommodate itself to the light. On the following morning a filament was fixed to the midrib of the larger and taller cotyledon (which enfolds the other and smaller one, whilst still within the seed), and a mark being placed close behind, the movement of the whole plant, that is, of the hypocotyl and cotyledon, was traced greatly magnified on a vertical glass. At first the plant bent so much towards the light that it was useless to attempt to trace the movement; but at 10 A.m. heliotropism almost wholly ceased and the first dot was
Fig. 6. Brassica oleracea: conjoint circumnutation of the hypocotyl and cotyledons during 10 hours 45 minutes. Figure here reduced to one-half original scale.
made on the glass. The last was made at 8.45 P.m.; seventeen dots being altogether made in this interval of 10 h. 45 m. (see Fig. 6). It should be noticed that when I looked shortly after 4 P.m. the bead was pointing off the glass, but it came on again at 5.30 P.m., and the course during this interval of 1 h. 30 m. has been filled up by imagination, but cannot be far from correct. The bead moved seven times from side to side, and thus described 3½ ellipses in 10¾ h.; each being completed on an average in 3 h. 4 m.
On the previous day another seedling had been observed under similar conditions, excepting that the plant was so [page 17] placed that a line joining the two cotyledons pointed towards the window; and the filament was attached to the smaller cotyledon on the side furthest from the window. Moreover the plant was now for the first time placed in this position. The cotyledons bowed themselves greatly towards the light from 8 to 10.50 A.m., when the first dot was made (Fig. 7). During the
Fig. 7. Brassica oleracea: conjoint circumnutation of the hypocotyl and cotyledons, from 10.50 A.m. to 8 A.m. on the following morning. Tracing made on a vertical glass.
next 12 hours the bead swept obliquely up and down 8 times and described 4 figures representing ellipses; so that it travelled at nearly the same rate as in the previous case. during the night it moved upwards, owing to the sleep-movement of the cotyledons, and continued to move in the same direction till 9 A.m. on the following morning; but this latter movement would not have occurred with seedlings under their natural conditions fully exposed to the light.
By 9.25 A.m. on this second day the same cotyledon had [page 18] begun to fall, and a dot was made on a fresh glass. The movement was traced until 5.30 P.m. as shown in (Fig. 8), which is given, because the course followed was much more irregular than on the two previous occasions. During these 8 hours the bead changed its course greatly 10 times. The upward movement of the cotyledon during the afternoon and early part of the night is here plainly shown.
Fig. 8. Brassica oleracea: conjoint circumnutation of the hypocotyl and cotyledons during 8 hours. Figure here reduced to one-third of the original scale, as traced on a vertical glass.
As the filaments were fixed in the three last cases to one of the cotyledons, and as the hypocotyl was left free, the tracings show the movement of both organs conjoined; and we now wished to ascertain whether both circumnutated. Filaments were therefore fixed horizontally to two hypocotyls close beneath the petioles of their cotyledons. These seedlings had stood for two days in the same position before a north-east window. In the morning, up to about 11 A.m., they moved in zigzag lines towards the light; and at night they again became almost upright through apogeotropism. After about 11 A.m. they moved a little back from the light, often crossing and recrossing their former path in zigzag lines. the sky on this day varied much in brightness, and these observations merely proved that the hypocotyls were continually moving in a manner resembling circumnutation. On a previous day which was uniformly cloudy, a hypocotyl was firmly secured to a little stick, and a filament was fixed to the larger of the two cotyledons, and its movement was traced on a vertical glass. It fell greatly from 8.52 A.m., when the first dot was made, till 10.55 A.m.; it then rose greatly until 12.17 P.m. Afterwards it fell a little and made a loop, but by 2.22 P.m. it had risen a little and continued rising till 9.23 P.m., when it made another loop, and at 10.30 P.m. was again rising. These observations show that the cotyledons move [page 19] vertically up and down all day long, and as there was some slight lateral movement, they circumnutated.
Fig. 9. Brassica oleracea: circumnutation of hypocotyl, in darkness, traced on a horizontal glass, by means of a filament with a bead fixed across its summit, between 9.15 A.m. and 8.30 A.m. on the following morning. Figure here reduced to one-half of original scale.
The cabbage was one of the first plants, the seedlings of which were observed by us, and we did not then know how far the circumnutation of the different parts was affected by light. Young seedlings were therefore kept in complete darkness except for a minute or two during each observation, when they were illuminated by a small wax taper held almost vertically above them. During the first day the hypocotyl of one changed its course 13 times (see Fig. 9); and it deserves notice that the longer axes of the figures described often cross one another at right or nearly right angles. Another seedling was observed in the same manner, but it was much older, for it had formed a true leaf a quarter of an inch in length, and the hypocotyl was 1⅜ inch in height. The figure traced was a very complex one, though the movement was not so great in extent as in the last case.
The hypocotyl of another seedling of the same age was secured to a little stick, and a filament having been fixed to the midrib of one of the cotyledons, the movement of the bead was traced during 14 h. 15 m. (see Fig. 10) in darkness. It should be noted that the chief movement of the cotyledons, namely, up and down, would be shown on a horizontal glass-plate only by the lines in the direction of the midrib (that is, [page 20] up and down, as Fig. 10 here stands) being a little lengthened or shortened; whereas any lateral movement would be well exhibited. The present tracing shows that the cotyledon did thus move laterally (that is, from side to side in the tracing) 12 times in the 14 h. 15 m. of observation. Therefore the cotyledons certainly circumnutated, though the chief movement was up and down in a vertical plane.
Fig 10. Brassica oleracea: circumnutation of a cotyledon, the hypocotyl having been secured to a stick, traced on a horizontal glass, in darkness, from 8.15 A.m. to 10.30 P.m. Movement of the bead of the filament magnified 13 times.
Rate of Movement.—The movements of the hypocotyls and cotyledons of seedling cabbages of different ages have now been sufficiently illustrated. With respect to the rate, seedlings were placed under the microscope with the stage removed, and with a micrometer eye-piece so adjusted that each division equalled ⅕00 inch; the plants were illuminated by light passing through a solution of bichromate of potassium so as to eliminate heliotropism. Under these circumstances it was interesting to observe how rapidly the circumnutating apex of a cotyledon passed across the divisions of the micrometer. Whilst travelling in any direction the apex generally oscillated backwards and forwards to the extent of ⅕00 and sometimes of nearly ½50 of an inch. These oscillations were quite different from the trembling caused by any disturbance in the same room or by the shutting of a distant door. The first seedling observed was nearly two inches in height and had been etiolated by having been grown in darkness. The tip of the cotyledon passed across 10 divisions of the micrometer, that is,⅕0 of an inch, in 6 m. 40 s. Short glass filaments were then fixed vertically to the hypocotyls of several seedlings so as to project a little above the cotyledons, thus exaggerating the rate of movement; but only a few of the observations thus made are worth giving. The most remarkable fact was the oscillatory movement above described, and the difference of rate at which the point crossed the divisions of the micrometer, after short intervals of time. For instance, a tall not-etiolated seedling had been kept for 14 h. in darkness; it was exposed before a north-east window for only [page 21] two or three minutes whilst a glass filament was fixed vertically to the hypocotyl; it was then again placed in darkness for half an hour and afterwards observed by light passing through bichromate of potassium. The point, oscillating as usual, crossed five divisions of the micrometer (i.e. 1/100 inch) in 1 m. 30 s. The seedling was then left in darkness for an hour, and now it required 3 m. 6 s. to cross one division, that is, 15 m. 30 s. to have crossed five divisions. Another seedling, after being occasionally observed in the back part of a northern room with a very dull light, and left in complete darkness for intervals of half an hour, crossed five divisions in 5 m. in the direction of the window, so that we concluded that the movement