The Power of Movement in Plants. Charles Darwin

The Power of Movement in Plants - Charles  Darwin


Скачать книгу
cotyledons rose thrice and fell twice between 8.15 A.m. and 4.15 P.m. Early on the following morning (June 19th) the apex of a cotyledon was [page 26] placed only 1⅞ inch from the vertical glass. At 6.40 A.m. it stood horizontally; it then fell till 8.35, and then rose. Altogether in the course of 12 h. it rose thrice and fell thrice, as may be seen in Fig. 15. The great nocturnal rise of the cotyledons usually commences about 4 or 5 P.m., and on the following morning they are expanded or stand horizontally at about 6.30 A.m. In the present instance, however, the great nocturnal rise did not commence till 7 P.m.; but this was due to the hypocotyl having from some unknown cause temporarily bent to the left side, as is shown in the tracing. To ascertain positively that the hypocotyl circumnutated, a mark was placed at 8.15 P.m. behind the two now closed and vertical cotyledons; and the movement of a glass filament fixed upright to the top of the hypocotyl was traced until 10.40 P.m. During this time it moved from side to side, as well as backwards and forwards, plainly showing circumnutation; but the movement was small in extent. Therefore Fig. 15 represents fairly well the movements of the cotyledons alone, with the exception of the one great afternoon curvature to the left.

      Oxalis corniculata (var. cuprea).—The cotyledons rise at night to a variable degree above the horizon, generally about 45o: those on some seedlings between 2 and 5 days old were found to be in continued movement all day long; but the movements were more simple than in the last two species. This may have partly resulted from their not being sufficiently illuminated whilst being observed, as was shown by their not beginning to rise until very late in the evening.

      Oxalis (Biophytum) sensitiva.—The cotyledons are highly remarkable from the amplitude and rapidity of their movements during the day. The angles at which they stood above or beneath the horizon were measured at short intervals of time; and we regret that their course was not traced during the whole day. We will give only a few of the measurements, which were made whilst the seedlings were exposed to a temperature of 22½o to 24½ decrees C. One cotyledon rose 70o in 11 m.; another, on a distinct seedling, fell 80o in 12 m. Immediately before this latter fall the same cotyledon had risen from a vertically downward to a vertically upward position in 1 h. 48 m., and had therefore passed through 180o in under 2 h. We have met with no other instance of a circumnutating movement of such great amplitude as 180o; nor of such rapidity of movement as the passage through 80o in 12 m. The cotyledons of this plant sleep at night by rising [page 27] vertically and coming into close contact. This upward movement differs from one of the great diurnal oscillations above described only by the position being permanent during the night and by its periodicity, as it always commences late in the evening.

      Tropaeolum minus (?) (var. Tom Thumb) (Tropaeoleae).—The cotyledons are hypogean, or never rise above the ground. By removing the soil a buried epicotyl or plumule was found, with its summit arched abruptly downwards, like the arched hypocotyl of the cabbage previously described. A glass filament with a bead at its end was affixed to the basal half or leg, just above the hypogean cotyledons, which were again almost surrounded by loose earth. The tracing (Fig. 16) shows the course of the bead during 11 h. After the last dot given in the figure, the bead moved to a great distance, and finally off the glass, in the direction indicated by the broken line. This great movement, due to increased growth along the concave surface of the arch, was caused by the basal leg bending backwards from the upper part, that is in a direction opposite to the dependent tip, in the same manner as occurred with the hypocotyl of the cabbage. Another buried and arched epicotyl was observed in the same manner, excepting that the two legs of the arch were tied together with fine silk for the sake of preventing the great movement just mentioned. It moved, however, in the evening in the same direction as before, but the line followed was not so straight. During the morning the tied arch moved in an irregularly circular, strongly zigzag course, and to a greater distance than in the previous case, as was shown in a tracing, magnified 18 times. The movements of a young plant bearing a few leaves and of a mature plant, will hereafter be described.

      Fig. 16. Tropaeolum minus (?): circumnutation of buried and arched epicotyl, traced on a horizontal glass, from 9.20 A.m. to 8.15 P.m. Movement of bead of filament magnified 27 times. [page 28]

      Citrus aurantium (Orange) (Aurantiaceae).—The cotyledons are hypogean. The circumnutation of an epicotyl, which at the close of our observations was .59 of an inch (15 mm.) in height above the ground, is shown in the annexed figure (Fig. 17), as observed during a period of 44 h. 40 m.

      Fig. 17. Citrus aurantium: circumnutation of epicotyl with a filament fixed transversely near its apex, traced on a horizontal glass, from 12.13 P.m. on Feb. 20th to 8.55 A.m. on 22nd. The movement of the bead of the filament was at first magnified 21 times, or 10½, in figure here given, and afterwards 36 times, or 18 as here given; seedling illuminated from above.

      Aesculus hippocastanum (Hippocastaneae).—Germinating seeds were placed in a tin box, kept moist internally, with a sloping bank of damp argillaceous sand, on which four smoked glass-plates rested, inclined at angles of 70o and 65o with the horizon. The tips of the radicles were placed so as just to touch the upper end of the glass-plates, and, as they grew downwards they pressed lightly, owing to geotropism, on the smoked surfaces, and left tracks of their course. In the middle part of each track the glass was swept clean, but the margins were much blurred and irregular. Copies of two of these tracks (all four being nearly alike) were made on tracing paper placed over the glass-plates after they had been varnished; and they are as exact as possible considering the nature of the margins (Fig. 18). They suffice to show that there was some lateral, almost serpentine movement, and that the tips in their downward course pressed with unequal force on the plates, as [page 29] the tracks varied in breadth. The more perfectly serpentine tracks made by the radicles of Phaseolus multiflorus and Vicia faba (presently to be described), render it almost certain that the radicles of the present plant circumnutated.

      Fig. 18. Aesculus hippocastanum: outlines of tracks left on inclined glass-plates by tips of radicles. In A the plate was inclined at 70o with the horizon, and the radicle was 1.9 inch in length, and .23 inch in diameter at base. In B the plate was inclined 65o with the horizon, and the radicle was a trifle larger.

      Phaseolus multiflorus (Leguminosae).—Four smoked glass-plates were arranged in the same manner as described under Aesculus, and the tracks left by the tips of four radicles of the present plant, whilst growing downwards, were photographed as transparent objects. Three of them are here exactly copied (Fig. 19). Their serpentine courses show that the tips moved regularly from side to side; they also pressed alternately with greater or less force on the plates, sometimes rising up and leaving them altogether for a very short distance; but this was better seen on the original plates than in the copies. These radicles therefore were continually moving in all directions—that is, they circumnutated. The distance between the extreme right and left positions of the radicle A, in its lateral movement, was 2 mm., as ascertained by measurement with an eye-piece micrometer.

      Fig. 19. Phaseolus multiflorus: tracks left on inclined smoked glass-plates by tips of radicles in growing downwards. A and C, plates inclined at 60o, B inclined at 68o with the horizon.

      Vicia faba (Common Bean) (Leguminosae).—Radicle.—Some beans were allowed to germinate on bare sand, and after one had protruded its radicle to a length of .2 of an inch, it was turned upside down, so that the radicle, which was kept in damp air, now stood upright. A filament, nearly an inch in length, was affixed obliquely near its tip; and the movement of the terminal bead was traced from 8.30 A.m. to 10.30 P.m., as shown in Fig. 18. The radicle at first changed its course twice [page 30] abruptly, then made a small loop and then a larger zigzag curve. During the night and till 11 A.m. on the following

      Fig. 20. Vicia faba: circumnutation of a radicle, at first pointing vertically upwards, kept in darkness, traced on a horizontal glass, during 14 hours. Movement of bead of filament magnified 23 times, here reduced to one-half of original scale.

      morning, the bead moved to a great distance in a nearly straight line, in the direction indicated by the broken line in the figure. This resulted from the tip bending quickly downwards, as it had now become much declined, and had thus gained a position highly favourable for the action of geotropism. Fig. 21. Vicia faba: tracks left on inclined smoked glass-plates, by tips of radicles in growing downwards. Plate C was inclined at 63o, plates A and D at 71o, plate B at 75o, and plate E at a few degrees beneath the horizon. [page 31]


Скачать книгу