The Life of Galileo Galilei, with Illustrations of the Advancement of Experimental Philosophy. John Elliot Drinkwater Bethune

The Life of Galileo Galilei, with Illustrations of the Advancement of Experimental Philosophy - John Elliot Drinkwater Bethune


Скачать книгу
in objects, the concave diminishes them: it is true that the convex magnifies, but it renders them confused and indistinct; consequently, one glass is insufficient to produce the desired effect. Proceeding to consider two glasses, and bearing in mind that the plane glass causes no change, I determined that the instrument could not consist of the combination of a plane glass with either of the other two. I therefore applied myself to make experiments on combinations of the two other kinds, and thus obtained that of which I was in search." It has been urged against Galileo that, if he really invented the telescope on theoretical principles, the same theory ought at once to have conducted him to a more perfect instrument than that which he at first constructed;[43] but it is plain, from this statement, that he does not profess to have theorized beyond the determination of the species of glass which he should employ in his experiments, and the rest of his operations he avows to have been purely empirical. Besides, we must take into account the difficulty of grinding the glasses, particularly when fit tools were yet to be made, and something must be attributed to Galileo's eagerness to bring his results to the test of actual experiment, without waiting for that improvement which a longer delay might and did suggest. Galileo's language bears a resemblance to the first passage which we quoted from Baptista Porta, sufficiently close to make it not improbable that he might be assisted in his inquiries by some recollection of it, and the same passage seems, in like manner, to have recurred to the mind of Kepler, as soon as he heard of the invention. Galileo's telescope consisted of a plano-convex and plano-concave lens, the latter nearest the eye, distant from each other by the difference of their focal lengths, being, in principle, exactly the same with the modern opera-glass. He seems to have thought that the Dutch glass was the same, but this could not be the case, if the above quoted particular of the inverted weathercock, which belongs to most traditions of the story, be correct; because it is the peculiarity of this kind of telescope not to invert objects, and we should be thus furnished with a demonstrative proof of the falsehood of Fuccarius's insinuation: in that case the Dutch glass must have been similar to what was afterwards called the astronomical telescope, consisting of two convex glasses distant from each other by the sum of their focal lengths. This supposition is not controverted by the fact, that this sort of telescope was never employed by astronomers till long afterwards; for the fame of Galileo's observations, and the superior excellence of the instruments constructed under his superintendence, induced every one in the first instance to imitate his constructions as closely as possible. The astronomical telescope was however eventually found to possess superior advantages over that which Galileo imagined, and it is on this latter principle that all modern refracting telescopes are constructed; the inversion being counteracted in those which are intended for terrestrial observations, by the introduction of a second pair of similar glasses, which restore the inverted image to its original position. For further details on the improvements which have been subsequently introduced, and on the reflecting telescope, which was not brought into use till the latter part of the century, the reader is referred to the Treatise on Optical Instruments.

      Galileo, about the same time, constructed microscopes on the same principle, for we find that, in 1612, he presented one to Sigismund, King of Poland; but his attention being principally devoted to the employment and perfection of his telescope, the microscope remained a long time imperfect in his hands: twelve years later, in 1624, he wrote to P. Federigo Cesi, that he had delayed to send the microscope, the use of which he there describes, because he had only just brought it to perfection, having experienced some difficulty in working the glasses. Schott tells an amusing story, in his "Magic of Nature," of a Bavarian philosopher, who, travelling in the Tyrol with one of the newly invented microscopes about him, was taken ill on the road and died. The authorities of the village took possession of his baggage, and were proceeding to perform the last duties to his body, when, on examining the little glass instrument in his pocket, which chanced to contain a flea, they were struck with the greatest astonishment and terror, and the poor Bavarian, condemned by acclamation as a sorcerer who was in the habit of using a portable familiar, was declared unworthy of Christian burial. Fortunately for his character, some bold sceptic ventured to open the instrument, and discovered the true nature of the imprisoned fiend.

      As soon as Galileo's first telescope was completed, he returned with it to Venice, and the extraordinary sensation which it excited tends also strongly to refute Fuccarius's assertion that the Dutch glass was already known there. During more than a month Galileo's whole time was employed in exhibiting his instrument to the principal inhabitants of Venice, who thronged to his house to satisfy themselves of the truth of the wonderful stories in circulation; and at the end of that time the Doge, Leonardo Donati, caused it to be intimated to him that such a present would not be deemed unacceptable by the senate. Galileo took the hint, and his complaisance was rewarded by a mandate confirming him for life in his professorship at Padua, at the same time doubling his yearly salary, which was thus made to amount to 1000 florins.

      FOOTNOTES:

       Table of Contents

      [32] Mecanique Analytique.

      [33] Histoire des Mathématiques, tom. ii.

      [34] "Per duo specilla ocularia si quis perspiciat, altero alteri superposito, majora multo et propinquiora videbit omnia."—Fracast. Homocentrica, § 2, c. 8.