Натуральные числа. Этюды, вариации, упражнения. Владимир Валентинович Трошин
при изложении материала невозможно обойтись без прилагательных. Поэтому поговорим о прилагательных, которыми могут характеризоваться различные числа. Уверяю вас, в этом направлении можно найти много интересного, возможно, ранее неизвестного вам. За основу берем узкую область математики – только натуральные числа (первое прилагательное). При этом мы должны отбросить такие прилагательные как: отрицательные, целые, противоположные, дробные, рациональные, иррациональные, трансцендентные, алгебраические, действительные, вещественные, комплексные и гиперкомплексные. Все эти слова относятся к последующим расширениям множества натуральных чисел, не входящим в область нашего рассмотрения. Думаете после этого останется мало прилагательных, которые можно «приложить» к натуральным числам? Как бы ни так, их еще удивительно много. В первую очередь натуральные числа являются положительными числами (второе прилагательное), к которым относятся все числа большие нуля.
Это были два общих определения, относящиеся ко всем натуральным числам. Далее мы будем использовать некие характеристические свойства, позволяющие выделить определенные числа из общей массы натуральных чисел или разбить их на непересекающиеся, а может быть и пересекающиеся подмножества. Классификацию будем вести одновременно по двум уровням. В первый уровень выделим основополагающие классы чисел, а во второй производные от основных, менее значимые.
Первый уровень классификации
Критерий – количество цифр в числе
По количеству цифр в записи числа натуральные числа можно разделить на следующие непересекающиеся подмножества:
однозначные, состоящие из одной цифры: 1, 2, 3, 4, 5, 6, 8, 9 (их всего девять);
двузначные, состоящие из двух цифр: от 10 до 99 (их девяносто);
трехзначные, от 100 до 999 (их девятьсот) и так далее, с обобщающим прилагательным – многозначные.
Критерий – делимость чисел
Взяв в качестве инструмента для классификации деление чисел, получаем разбиение натуральных чисел на четные и нечетные, простые и составные, избыточные и недостаточные, наконец, совершенные и дружественные.
Поговорим о каждом виде чисел подробнее.
Начнем с четных и нечетных, с ними нет никаких затруднений, они изучаются в школе. Четными называются числа, которые делятся на 2 без остатка: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,…. Нечетными называются числа, которые не делятся на 2, а дают остаток 1 при делении на 2: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23,….
В натуральном ряду чисел идут попеременно нечетное число, четное число, нечетное, четное. При сложении двух четных чисел, получается четное число, при сложении двух нечетных чисел тоже получается четное число: 8+18=26, 9+19=28. Если складывают четное число с нечетным, то получается нечетное число. Если умножаются нечетные числа, то получается число нечетное, а если хотя бы один сомножитель четный, то и всё произведение будет четным. Деление на четные и нечетные числа разбивает множество натуральных чисел