Los números de la vida. Kit Yates
(marcados con V) y el número total de los capturados el segundo día (marcados con ) debería ser igual a la proporción (23:138) entre el número de caracoles capturados el primer día (marcados con Î) y el número total de los que hay en el jardín (marcados y sin marcar).
Este sencillo método matemático, conocido como capturarecaptura, o marcaje y recaptura, proviene de la ecología, que lo emplea para estimar el tamaño de las poblaciones de animales. Puedes probar a usar esta técnica tomando dos muestras independientes y comparando la coincidencia entre ellas. Quizá quieras calcular la cantidad de números que se vendieron para la rifa celebrada en la feria local, o hacer una estimación de la asistencia a un partido de fútbol utilizando las matrices de las entradas en lugar de tener que realizar un arduo recuento de los espectadores.
El método de captura-recaptura también se emplea en proyectos científicos serios. Por ejemplo, puede proporcionar información vital sobre las fluctuaciones del número de ejemplares de una especie en peligro de extinción. Si se utiliza para realizar una estimación del número de peces que hay en un lago,1 podría ayudar a las autoridades a determinar cuántos permisos de pesca pueden emitir. La eficacia de esta técnica es tan grande que su uso se ha extendido más allá del marco de la ecología para proporcionar estimaciones precisas sobre toda clase de cosas, desde el número de drogadictos2 en una población hasta el número de muertos en la guerra de Kosovo.3 Tal es el poder pragmático que pueden llegar a ejercer las ideas matemáticas más sencillas. Este tipo de conceptos son los que exploraremos a lo largo del presente volumen, y los que yo utilizo habitualmente en mi trabajo diario como biólogo matemático.
Cuando le digo a la gente que soy biólogo matemático, la reacción que obtengo suele ser un gesto cortés de asentimiento con la cabeza acompañado de un incómodo silencio, como si estuviera a punto de ponerles a prueba para ver si recuerdan la fórmula cuadrática o el teorema de Pitágoras. Pero, más que amedrentarse simplemente, a la gente sobre todo le cuesta entender cómo una disciplina como las matemáticas, que perciben como abstracta, pura y etérea, puede tener algo que ver con otra como la biología, que generalmente se considera práctica, sucia y pragmática. Esta dicotomía artificial a menudo ya se puede encontrar en la escuela: si te gustaba la ciencia, pero no el álgebra, hacían que te decantaras por las ciencias de la vida; si, como yo, disfrutabas de la ciencia, pero no te gustaba cortar cosas muertas (una vez me desmayé al comienzo de una clase de disección al entrar en el laboratorio y ver una cabeza de pescado sentada en mi sitio), te encaminaban hacia las ciencias físicas. Pero ambas nunca se encontraban.
Eso fue lo que me ocurrió a mí. En los últimos cursos de secundaria renuncié a la biología e hice las pruebas de acceso para cursar matemáticas, matemáticas avanzadas, física y química. Al llegar a la universidad tuve que ser aún más selectivo con mis asignaturas, y me entristeció tener que dejar atrás para siempre la biología, una disciplina que en mi opinión tenía un poder increíble para mejorar la vida. Me entusiasmaba enormemente la oportunidad de sumergirme en el mundo de las matemáticas, pero no podía por menos que sentir cierta inquietud al pensar que estaba optando por una disciplina que parecía tener muy pocas aplicaciones prácticas. No podría haber estado más equivocado.
Mientras me abría paso con esfuerzo a través de las matemáticas puras que nos enseñaban en la universidad, memorizando la prueba del teorema del valor intermedio o la definición de espacio vectorial, disfrutaba sobremanera de los cursos de matemáticas aplicadas. Escuché a los profesores explicar las fórmulas que utilizan los ingenieros para construir puentes que no resuenen ni se derrumben con el viento, o para diseñar alas que garanticen que los aviones no se caigan del cielo. Aprendí la mecánica cuántica que emplean los físicos para comprender los extraños sucesos que acontecen a escala subatómica y la teoría de la relatividad especial que explora las extrañas consecuencias de la invariancia de la velocidad de la luz. Asistí a cursos en los que se explicaba cómo utilizamos las matemáticas en disciplinas como la química, las finanzas y la economía. Leí acerca de cómo las empleamos en el ámbito deportivo para mejorar el rendimiento de nuestros mejores atletas, y en el cine para crear imágenes generadas por ordenador de escenas que no podrían existir en la vida real. En resumidas cuentas, aprendí que las matemáticas se pueden emplear para describirlo casi todo.
En el tercer año de carrera tuve la suerte de asistir a un curso de biología matemática. El profesor era Philip Maini, un catedrático norirlandés de unos cuarenta y tantos años y una atractiva personalidad. No solo era la figura preeminente de su campo (más tarde sería elegido miembro de pleno derecho de la Royal Society de Londres), sino que además resultaba evidente que era un enamorado de su disciplina, y su entusiasmo se contagiaba a todos los estudiantes que asistían a su clase.
Aparte de la biología matemática en sí, Philip me enseñó sobre todo que los matemáticos son seres humanos con sentimientos, y no autómatas unidimensionales, como a menudo se los retrata. En palabras del matemático húngaro y especialista en teoría de la probabilidad Alfréd Rényi, un matemático es algo más que «una máquina de convertir café en teoremas». Cierto día en que estaba sentado en el despacho de Philip aguardando el comienzo de una entrevista para un doctorado, vi, enmarcadas en las paredes, las numerosas cartas de rechazo que había recibido de varios clubes de la Premier League a los que había solicitado en broma puestos directivos vacantes. Al final terminamos hablando más de fútbol que de matemáticas.
De manera crucial, en ese punto de mis estudios académicos Philip me ayudó a reconciliarme por completo con la biología. Durante el doctorado, que realicé bajo su supervisión, trabajé en toda clase de cosas, desde descubrir cómo se forman las plagas de langostas y cómo detenerlas, hasta predecir la compleja coreografía que constituye el desarrollo del embrión de los mamíferos y las devastadoras consecuencias que se producen cuando sus pasos dejan de sincronizarse. Construí modelos teóricos para explicar cómo los huevos de las aves forman sus hermosos patrones de pigmentación y escribí algoritmos para rastrear el movimiento de las bacterias que nadan libremente en un medio acuoso. Elaboré simulaciones de cómo los parásitos eluden nuestro sistema inmunitario y cómo se propaga una enfermedad mortal en una población. El trabajo que inicié durante mi doctorado sería la base sobre la que se fundamentaría toda mi carrera. Todavía sigo trabajando en estas fascinantes áreas de la biología y en otras, con mis propios estudiantes de doctorado, en mi puesto actual como profesor adjunto a la cátedra de Matemáticas Aplicadas de la Universidad de Bath.
Como especialista en matemáticas aplicadas, para mí las matemáticas son, ante todo, una herramienta práctica para dar sentido a nuestro complejo mundo. La elaboración de modelos matemáticos puede darnos ventaja en situaciones cotidianas y no requiere escribir cientos de tediosas ecuaciones o líneas de código de ordenador. En su forma más básica, las matemáticas se reducen a patrones. Cada vez que contemplamos el mundo construimos nuestro propio modelo de los patrones que observamos. Si detectamos un motivo en las ramas fractales de un árbol o en la múltiple simetría de un copo de nieve, lo que vemos son matemáticas. Cuando dejamos que nuestros pies se muevan al compás de una pieza musical, o cuando nuestra voz reverbera y resuena al cantar en la ducha, lo que oímos son matemáticas. Si lanzamos una vaselina al fondo de la red o atrapamos una pelota de críquet en su trayectoria parabólica, lo que hacemos son matemáticas. Con cada nueva experiencia, cada información sensorial, los modelos que hemos creado de nuestro entorno se refinan, se reconfiguran y se hacen cada vez más detallados y complejos. Construir modelos matemáticos, diseñados para captar nuestra intrincada realidad, es la mejor manera que tenemos de dar sentido a las reglas que gobiernan el mundo que nos rodea.
Creo que los modelos más simples e importantes son las historias y analogías. La clave para ilustrar la influencia de la corriente invisible que discurre en lo más profundo de las matemáticas es demostrar sus efectos en la vida de la gente: de lo extraordinario a lo cotidiano. Si miramos a través de la lente correcta, podemos empezar a descifrar las reglas matemáticas ocultas que subyacen a nuestras experiencias más corrientes.
En los siete capítulos del presente volumen exploraremos las historias reales de una serie de eventos de trascendental importancia en los que la aplicación (o el mal uso) de las matemáticas ha desempeñado un papel clave: pacientes lisiados