Ice Adhesion. Группа авторов

Ice Adhesion - Группа авторов


Скачать книгу
and H. M. Hartmann, A Handbook of Horse-shoeing, with Introductory Chapters on the Anatomy and Physiology of the Horse’s Foot, W.R. Jenkins, New York (1898).

      41 41. B. Clark, Hippodonomia, or The True Structure, Laws, and Economy of the Horse’s Foot: Also Podophthora, or A Ruinous Defect in the Principle of the Common Shoe Detected., 2nd edition, Gaulter, London, UK (1829).

      42 42. J. Boudot (Ed.), Histoire de l'Académie Royale des Sciences, de l’Imprimerie Royale, à Paris (1756).

      43 43. R. Walker, An Account of Some Remarkable Discoveries in the Production of Artificial Cold; with Experiments on the Congelation of Quicksilver in England: Likewise, Observations on the Best Methods of Producing Artificial Cold; and Their Application to Useful Purposes in Hot Climates. Interspersed with Philosophical and Explanatory Notes; and Illustrated with a Plate, Representing the Different Kinds of Apparatus Which are Applicable to the Various Purposes Required, Printed for Messrs. Fletcher and Harwell, Oxford, UK (1796).

      44 44. C. Blagden, X. Experiments on the cooling of water below its freezing point, Philos. Trans. R. Soc. London, 78, 125-146 (1788).

      45 45. F. H. Getman, Sir Charles Blagden, F. R. S., Osiris, 3, 69-87 (1937).

      46 46. M. Wolfe and H. Baker, Descriptio fontis hieronis in metallifodinis chemnicensibus in hungaria, anno 1756 extructi; auctore, Philos. Trans. R. Soc. London, 52, 547-554 (1761).

      47 47. A. Neuburger and H. L. Brose, The Technical Arts and Sciences of the Ancients, Barnes & Noble, New York (1969).

      48 48. E. M. Webster, James Harrison: 1815-1893, Vic. Hist. J., 21, 1-13 (1945).

      49 49. S. Freidberg, Fresh: A Perishable History, Belknap Press of Harvard University Press, Cambridge, MA (2009).

      50 50. J. C. A. Peltier, Nouvelles expériences sur la caloricité des courans électriques, Annales Chimie Physique, 56, 371-386 (1834).

      51 51. S. Rajasekar and R. Velusamy, Quantum Mechanics I: The Fundamentals, CRC Press, New York (2014).

      52 52. T. J. Seebeck, Ueber die magnetishe polarisation der metalle und erze durch temperatur-differenz, Annalen Physik Chemie, 6, 1-20 (1826).

      53 53. H. C. Ørsted, Nouvelles expériences de M. Seebeck sur les actions électo-magnétiques, Annales Chimie Physique, 22, 199-201 (1823).

      54 54. T. W. Kerlin and M. Johnson, Practical Thermocouple Thermometry, 2nd edition, International Society of Automation, Research Triangle Park, NC (2012).

      55 55. M. V. Vedernikov and E. K. Iordanishvili, A.F. Ioffe and origin of modern semiconductor thermoelectric energy conversion, in: Proceedings of the 17th International Conference on Thermoelectrics ICT98, pp. 37-42 (1998).

      56 56. H. J. Goldsmid and R. W. Douglas, The use of semiconductors in thermoelectric refrigeration, Br. J. Appl. Phys., 5, 386-390 (1954).

      57 57. B. C. Sales, Thermoelectric devices: Refrigeration and power generations with no moving parts, in: Encyclopedia of Materials: Science and Technology, K. Buschow, (Ed.), pp. 9179-9185, Elsevier, Oxford (2001).

      58 58. P. N. Stearns, The Industrial Revolution in World History, 4th edition, Westview Press, Boulder, Colo. (2013).

      59 59. S. J. C. Nixon, The Invention of the Automobile (Karl Benz and Gottlieb Daimler), Country Life Ltd., London, UK (1936).

      60 60. G. A. Niemeyer, The Automotive Career of Ransom E. Olds, Bureau of Business and Economic Research, Graduate School of Business Administration, Michigan State University, East Lansing (1963).

      61 61. V. Curcio, Henry Ford, Oxford University Press, Oxford, UK (2013).

      62 62. B. C. Howard, The surprising history of road salt, https://news.nationalgeographic.com/news/2014/02/140212-road-salt-shortages-melting-ice-snow-science/, accessed: 2019-01-09.

      63 63. V. R. Kelly, S. E. Findlay, W. H. Schlesinger, K. Menking, and A. M. Chatrchyan, Road salt: Moving toward the solution, Report, The Cary Institute of Ecosystem Studies, Millbrook, NY (2010).

      64 64. D. G. McCullough, The Wright Brothers, 1st edition, Simon & Schuster, New York (2015).

      65 65. T. A. Heppenheimer, A Brief History of Flight: From Balloons to Mach 3 and Beyond, Wiley, New York (2001).

      66 66. Preliminary data summary: Airport deicing operations, Report, United States Environmental Protection Agency (2000).

      67 67. Kilfrost Ltd., History of Kilfrost deicing products, https://www.copybook.com/companies/kilfrost/history-of-kilfrost-gallery/glycol-deicer-01, accessed: 2019-01-09.

      68 68. M. Volmer and A. Weber, Keimbildung in übersättigten gebilden, Zeit. Physikalische Chemie, 119U, 277-301 (1926).

      69 69. R. Becker and W. Döring, Kinetische behandlung der keimbildung in übersättigten dampfen, Ann. Phys., 416, 719-752 (1935).

      70 70. J. Frenkel, A general theory of heterophase fluctuations and pretransition phenomena, J. Chem. Phys., 7, 538-547 (1939).

      71 71. S. Karthika, T. K. Radhakrishnan, and P. Kalaichelvi, A review of classical and non-classical nucleation theories, Cryst. Growth Des., 16, 6663-6681 (2016).

      72 72. J. M. Smith, H. C. Van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill, Boston (2005).

      73 73. C. A. Angell, W. J. Sichina, and M. Oguni, Heat capacity of water at extremes of supercooling and superheating, J. Phys. Chem., 86, 998-1002 (1982).

      74 74. P. T. Hacker and R. G. Dorsch, A summary of meteorological conditions associated with aircraft and a proposed method of selecting design criterions for ice-protection equipment, Report, United States National Advisory Committee for Aeronautics, Washington, D.C. (1951).

      75 75. N. H. Fletcher, Size effect in heterogeneous nucleation, J. Chem. Phys., 29, 572-576 (1958).

      76 76. P. C. Mahata, The effect of contact angle, surface roughness, and adsorption of heterogeneous nucleation of condensing water, PhD thesis, Dept. of Mechanical Engineering, University of Missouri - Rolla (1974).

      77 77. G. Malenkov, Liquid water and ices: understanding the structure and physical properties, J. Phys.: Condens. Matter, 21, 283101 (2009).

      78 78. P. Eberle, M. K. Tiwari, T. Maitra, and D. Poulikakos, Rational nanostructuring of surfaces for extraordinary icephobicity, Nanoscale, 6, 4874-4881 (2014).

      79 79. L. Cao, A. K. Jones, V. K. Sikka, J. Wu, and D. Gao, Anti-icing superhydrophobic coatings, Langmuir, 25, 12444-12448 (2009).

      80 80. K. K. Varanasi, T. Deng, J. D. Smith, M. Hsu, and N. Bhate, Frost formation and ice adhesion on superhydrophobic surfaces, Appl. Phys. Lett., 97, 234102 (2010).

      81 81. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation, Springer, New York (2010).

      82 82. P. W. Atkins and J. De Paula, Atkins’ Physical Chemistry, Oxford University Press, Oxford, UK (2014).

      83 83. R. S. Smith and B. D. Kay, The existence of supercooled liquid water at 150 K, Nature, 398, 788-791 (1999).

      84 84. W. C. Navidi, Statistics for Engineers and Scientists, McGraw-Hill, New York (2014).

      85 85. F. Pellerey, M. Shaked, and J. Zinn, Nonhomogeneous Poisson processes and logconcavity, Probab. Eng. Inf. Set., 14, 353-373 (2000).

      86 86. Fighting flying ice, Popular Mechanics Magazine, p. 82 (February 1946).

      87 87. D. Loughborough and E. Haas, Reduction of the adhesion of ice to de-icer surfaces, J. Aeronaut. Sci., 13, 126-134 (1946).

      88 88. T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95, 65-87 (1805).

      89 89. L. Makkonen, Surface melting of ice, J. Phys. Chem. B, 101, 6196-6200 (1997).

      90 90. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind.


Скачать книгу