Ice Adhesion. Группа авторов

Ice Adhesion - Группа авторов


Скачать книгу
A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40, 546-551 (1944).

      92 92. A. B. D. Cassie, Contact angles, Disc. Faraday Soc., 3, 11-16 (1948).

      93 93. R. E. Johnson Jr. and R. H. Dettre, Contact angle hysteresis, in: Contact Angle, Wettability, and Adhesion, Adv. Chem. Ser. vol 43, pp. 112-135, American Chemical Society (1964).

      94 94. L. Makkonen, Ice adhesion—theory, measurements and countermeasures, J. Adhesion Set. Technol., 26, 413-445 (2012).

      95 95. P. Tourkine, M. Le Merrer, and D. Quéré, Delayed freezing on water repellent materials, Langmuir, 25, 7214-7216 (2009).

      96 96. L. Mishchenko, B. Hatton, V. Bahadur, J. A. Taylor, T. Krupenkin, and J. Aizenberg, Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets, ACS Nano, 4, 7699-7707 (2010).

      97 97. T. Maitra, M. K. Tiwari, C. Antonini, P. Schoch, S. Jung, P. Eberle, and D. Poulikakos, On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature, Nano Letters, 14, 172-182 (2014).

      98 98. S. Jung, M. Dorrestijn, D. Raps, A. Das, C. M. Megaridis, and D. Poulikakos, Are superhydrophobic surfaces best for icephobicity?, Langmuir, 27, 3059-3066 (2011).

      99 99. H. Saito, K. Takai, and G. Yamauchi, Water- and ice-repellent coatings, Surf. Coat. Int., 80, 168-171 (1997).

      100 100. Y. He, C. Jiang, X. Cao, J. Chen, W. Tian, and W. Yuan, Reducing ice adhesion by hierarchical micro-nano-pillars, Appl. Surf. Sci., 305, 589-595 (2014).

      101 101. S. A. Kulinich and M. Farzaneh, Ice adhesion on super-hydrophobic surfaces, Appl. Surf. Sci., 255, 8153-8157 (2009).

      102 102. S. A. Kulinich and M. Farzaneh, How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces, Langmuir, 25, 8854-8856 (2009).

      103 103. A. Dotan, H. Dodiuk, C. Laforte, and S. Kenig, The relationship between water wetting and ice adhesion, J. Adhesion Sci. Technol., 23, 1907-1915 (2009).

      104 104. L. Gao and T. J. McCarthy, Contact angle hysteresis explained, Langmuir, 22, 6234-6237 (2006).

      105 105. A. Sarkar and A.-M. Kietzig, Design of a robust superhydrophobic surface: thermodynamic and kinetic analysis, Soft Matter, 11, 1998-2007 (2015).

      106 106. H.-J. Butt and M. Kappl, Surface and Interfacial Forces, 2nd edition, Wiley-VCH, Weinheim, Germany (2018).

      107 107. X. Wang, K. Binder, C. Chen, T. Koop, U. Pöschl, H. Su, and Y. Cheng, Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations, Phys. Chem. Chem. Phys., 21, 3360-3369 (2019).

      108 108. E. J. Y. Ling, V. Uong, J.-S. Renault-Crispo, A.-M. Kietzig, and P. Servio, Reducing ice adhesion on nonsmooth metallic surfaces: Wettability and topography effects, ACS Appl. Mater. Interfaces, 8, 8789-8800 (2016).

      109 109. M. He, H. Li, J. Wang, and Y. Song, Superhydrophobic surface at low surface temperature, Appl. Phys. Lett., 98, 093118 (2011).

      110 110. H.-J. Wang, X.-K. Xi, A. Kleinhammes, and Y. Wu, Temperature-induced hydrophobic-hydrophilic transition observed by water adsorption, Science, 322, 80-83 (2008).

      111 111. C. A. Scholes, G. W. Stevens, and S. E. Kentish, The effect of hydrogen sulfide, carbon monoxide and water on the performance of a PDMS membrane in carbon dioxide/nitrogen separation, J. Membrane Sci., 350, 189-199 (2010).

      112 112. D. B. Asay and S. H. Kim, Evolution of the adsorbed water layer structure on silicon oxide at room temperature, J. Phys. Chem. B, 109, 16760-16763 (2005).

      113 113. C. A. Ward and K. Sefiane, Adsorption at the solid-cliquid interface as the source of contact angle dependence on the curvature of the three-phase line, Adv. Colloid Interface Sci., 161, 171-180 (2010).

      114 114. H. Ghasemi and C. A. Ward, Sessile-water-droplet contact angle dependence on adsorption at the solid-liquid interface, J. Phys. Chem. C, 114, 5088-5100 (2010).

      115 115. S. Farhadi, M. Farzaneh, and S. Simard, On stability and ice-releasing performance of nanostructured fluoro-alkylsilane-based superhydrophobic Al alloy2024 surfaces, Int. J. Theo. Appl. Nanotech., 1, 38-44 (2012).

      116 116. A. Davis, Y. H. Yeong, A. Steele, I. S. Bayer, and E. Loth, Superhydrophobic nanocomposite surface topography and ice adhesion, ACS Appl. Mater. Interfaces, 6, 9272-9279 (2014).

      117 117. Y. Wang, J. Xue, Q. Wang, Q. Chen, and J. Ding, Verification of icepho-bic/anti-icing properties of a superhydrophobic surface, ACS Appl. Mater. Interfaces, 5, 3370-3381 (2013).

      118 118. T. Bharathidasan, S. V. Kumar, M. S. Bobji, R. P. S. Chakradhar, and B. J. Basu, Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces, Appl. Surf. Sci., 314, 241-250 (2014).

      119 119. M. Susoff, K. Siegmann, C. Pfaffenroth, and M. Hirayama, Evaluation of icephobic coatings-screening of different coatings and influence of roughness, Appl. Surf. Sci., 282, 870-879 (2013).

      120 120. S. A. Kulinich, S. Farhadi, K. Nose, and X. W. Du, Superhydrophobic surfaces: Are they really ice-repellent?, Langmuir, 27, 25-29 (2011).

      121 121. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd edition, Taylor & Francis, Boca Raton, FL (2005).

      122 122. R. Menini and M. Farzaneh, Advanced icephobic coatings, J. Adhesion Sci. Technol, 25, 971-992 (2011).

      123 123. M. Nosonovsky and V. Hejazi, Why superhydrophobic surfaces are not always icephobic, ACS Nano, 6, 8488-8491 (2012).

      124 124. P. V. Hobbs, Ice Physics, Clarendon Press, Oxford, UK (1974).

      125 125. P. Desai and C. Ho, Thermal linear expansion of nine selected AISI stainless steels, Report, American Iron and Steel Institute, Washington, D.C. (1978).

      126 126. D. Quéré, Non-sticking drops, Rep. Prog. Phys., 68, 2495-2532 (2005).

      127 127. D. Dowson, History of Tribology, 2nd edition, Professional Engineering Publishing, London, UK (1998).

      128 128. B. N. J. Persson, Sliding Friction: Physical Principles and Applications, 2nd edition, Springer, Berlin (2000).

      129 129. M. Faraday, XXIV. On regelation, and on the conservation of force, The London, Edinburgh, and Dublin Philos. Mag. J. Sci., 17, 162-169 (1859).

      130 130. J. Thomson and W. Thomson, I. On recent theories and experiments regarding ice at or near its melting-point, Proc. R. Soc. London, 10, 151-160 (1860).

      131 131. O. Reynolds, A. W. Brightmore, and W. H. Moorby, Papers on Mechanical and Physical Subjects, Cambridge University Press, Cambridge, UK (1900).

      132 132. F. P. Bowden, T. P. Hughes, and C. H. Desch, The mechanism of sliding on ice and snow, Proc. R. Soc. London Ser. A, 172, 280-298 (1939).

      133 133. A.-M. Kietzig, S. G. Hatzikiriakos, and P. Englezos, Physics of ice friction, J. Appl. Phys., 107, 081101 (2010).

      134 134. F. P. Bowden, Introduction to the discussion: the mechanism of friction, Proc. R. Soc. London Ser. A, 212, 440-449 (1952).

      135 135. B. Bhushan, Introduction to Tribology, John Wiley & Sons, New York (2002).

      136 136. F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Oxford University Press, Oxford, UK (2001).

      137 137. I. Kozlov and A. Shugai, Experimental study of high-speed friction on ice, Fluid Dyn., 26, 145-147 (1991).

      138 138. S. C. Colbeck, The kinetic friction of snow, J. Glaciol., 34, 78-86 (1988).

      139 139. A. J. Fowler and A. Bejan, Contact melting during sliding on ice, Int. J. Heat Mass Transfer, 36, 1171-1179 (1993).

      140 140. V. F. Petrenko and R. W. Whitworth, Physics of Ice, Oxford University Press, Oxford (2002).

      141 141. N. H. Fletcher, Surface structure of water and ice, Philosoph. Mag., 7, 255-269 (1962).

      142 142. N. H. Fletcher, Surface structure of water and ice


Скачать книгу