Ice Adhesion. Группа авторов

Ice Adhesion - Группа авторов


Скачать книгу
is excluded from the experimental statistics due to the different ice nucleation mechanism (Tsat = 298.05 ± 0.5 K). Figure is reprinted with permission from [67].

      As mentioned above, the recent study of nanoengineered surfaces with hybrid wetting features suggests an increased interest in the spatial control of droplet condensation for anti-freezing. However, a long-term manipulation of droplet and ice nucleation has proven to be exceedingly difficult. Since the continuous phase change of water involves the nucleation at nanoscale and liquid transport at macroscale, new work in this area should emphasize attaining an optimized surface topography which can improve nucleation and water transport simultaneously. Although the current implementation of surface structures and chemistries encounters a number of degradation issues, fundamental studies of key interfacial phenomena should lead to a significant improvement in the condensation and anti-icing performance and might pave the way for long term durability.

      In this chapter, the theoretical modeling framework of classical nucleation theory has been outlined. The fundamentals are applicable for predicting both water and ice nucleation processes due to the same controlling mechanism of embryo formation. In simple terms, the phase transition occurs when an embryo (cluster) of new phase forms with a critical size, which is related to a maximum energy of embryo formation as “nucleation barrier”. From classical theory, a temperature-dependent nucleation rate can be expressed:

      The model demonstrates the relevant parameters of nucleation, including the nucleation barrier ΔG*, and the dynamical pre-factor J0 which depends on the diffusion coefficient for nucleation.

      Classical nucleation theory provides a rational guideline to spatially control the heterogeneous nucleation of water and ice on solid surfaces. By altering the structural topography and intrinsic wettability on surfaces, the location and movement of nucleating water embryos can be manipulated. One example is enabling the condensate to form the suspended Cassie droplet during condensation. Such droplet wetting morphology can enhance the continuous condensation rate, while also suppressing ice nucleation in condensed water when the surface is in a supercooled condition. However, the understanding of interfacial properties for ice nuclei on solid surfaces remains inconclusive. Recent investigations on anti-freeze proteins and ionic surfaces indicate a strong influence of interface effects on the nucleation. These unresolved questions imply that more work needs to be conducted on the exact molecular mechanism underlying the nucleation processes. The answers will direct the future strategies for enhanced condensation and anti-icing applications.

image

      This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 801229. Youmin Hou acknowledges the funding support by the Alexander von Humboldt Foundation.

      1 1. M. Volmer and A. Weber, Nucleus formation in supersaturated systems. Z. Phys. Chem. (Leipzig) 119, 277-301 (1926).

      2 2. M. Volmer, Kinetik der Phasenbildung. first edition. Steinkopf, Dresden (1939).

      3 3. L. Farkas, Keimbildungsgeschwindigkeit in übersättigten Dämpfen. Z. Phys. Chem. (Muenchen, Ger.) 125, 236-242 (1927).

      4 4. R. Becker and W. Döring, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Annalen der Physik 416, 719-752 (1935).

      5 5. Y.B. Zeldovich, On the theory of new phase formation: cavitation. Acta Physicochim. USSR 18, 1-22 (1943).

      6 6. D. Turnbull and J.C. Fisher, Rate of nucleation in condensed systems. J. Chem. Phys. 17, 71-73 (1949).

      7 7. H.R. Pruppacher and J.D. Klett, Microphysics of Clouds and Precipitation. Springer Science & Business Media, Heidelberg (1998).

      8 8. P. Rein ten Wolde and D. Frenkel, Homogeneous nucleation and the Ostwald step rule. Phys. Chem. Chem. Phys. 1, 2191-2196 (1999).

      9 9. A. Tabazadeh, Y.S. Djikaev, and H. Reiss, Surface crystallization of supercooled water in clouds. Proc. Natl. Acad. Sci. USA. 99, 15873-15878 (2002).

      10 10. A. Tabazadeh, Y.S. Djikaev, P. Hamill, and H. Reiss, Laboratory evidence for surface nucleation of solid polar stratospheric cloud particles. J. Phys. Chem. A 106, 10238-10246 (2002).

      11 11. J.E. Kay, V. Tsemekhman, B. Larson, M. Baker, and B. Swanson, Comment on evidence for surface-initiated homogeneous nucleation. Atmos. Chem. Phys. 3, 1439-1443 (2003).

      12 12. N.H. Fletcher, The Physics of Rainclouds. first edition. Cambridge University Press, Cambridge, UK (2011).

      13 13. J. Feng, Y. Pang, Z. Qin, R. Ma, and S. Yao, Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others. ACS Appl. Mater. Interfaces 4, 6618-6625 (2012).

      14 14. H. Jo, K.W. Hwang, D. Kim, M. Kiyofumi, H.S. Park, M.H. Kim, and H.S. Ahn, Loss of superhydrophobicity of hydrophobic micro/nano structures during condensation. Sci. Rep. 5, 9901 (2015).

      15 15. C. Dorrer and J. Rühe, Wetting of silicon nanograss: from superhydrophilic to superhydrophobic surfaces. Adv. Mater. 20, 159-163 (2008).

      16 16. C. Dorrer and J. Rühe, Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 3820-3824 (2007).

      17 17. R. Narhe and D. Beysens, Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir 23, 6486-6489 (2007).

      18 18. K. Rykaczewski, A.T. Paxson, S. Anand, X. Chen, Z. Wang, and K.K. Varanasi, Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Langmuir 29, 881-891 (2012).

      19 19. R. Enright, N. Miljkovic, N. Dou, Y. Nam, and E.N. Wang, Condensation on superhydrophobic copper oxide nanostructures. J. Heat Transfer 10, 091304 (2012).

      20 20. N. Miljkovic, D.J. Preston, R. Enright, and E.N. Wang, Electrostatic charging of jumping droplets. Nat. Commun. 4, 2517, (2013).

      21 21. X. Yan, L. Zhang, S. Sett, L. Feng, C. Zhao, Z. Huang, H. Vahabi, A.K. Kota, F. Chen, and N. Miljkovic, Droplet jumping: effects of droplet size, surface structure, pinning, and liquid properties. ACS Nano 13, 1309-1323 (2019).

      22 22. R. Enright, N. Miljkovic, J. Sprittles, K. Nolan, R. Mitchell, and E.N. Wang, How coalescing droplets jump. ACS Nano 8, 10352-10362 (2014).

      23 23. S. Kim and K.J. Kim, Dropwise condensation modeling suitable for superhydrophobic surfaces. J. Heat Transfer 133, 081502 (2011).

      24 24. S. Chavan, H. Cha, D. Orejon, K. Nawaz, N. Singla, Y.F. Yeung, D. Park, D.H. Kang, Y. Chang, Y. Takata, and N. Miljkovic, Heat transfer through a condensate droplet on hydrophobic and nanostructured superhydrophobic surfaces. Langmuir 32, 7774-7787 (2016).

      25 25. S. Jung, M.K. Tiwari, N.V. Doan, and D. Poulikakos, Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3, 615 (2012).

      26 26. S. Jung, M.K. Tiwari, and D. Poulikakos, Frost halos from supercooled water droplets. Proc. Natl. Acad. Sci. U. S. A. 109, 16073-16078 (2012).

      27 27. B. Zobrist, T. Koop, B.P. Luo, C. Marcolli, and T. Peter, Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer. J. Phys. Chem. C 111, 2149-2155 (2007).

      28 28. S. Nath and J.B. Boreyko, On localized vapor pressure gradients governing condensation and frost phenomena. Langmuir 32, 8350-8365 (2016).

      29 29. J. Guadarrama-Cetina, A. Mongruel, W. González-Viñas, and D. Beysens, Percolation-induced frost formation. Europhys. Lett. 101, 16009 (2013).

      30 30. V. Bahadur, L. Mishchenko, B. Hatton, J.A. Taylor, J. Aizenberg, and T. Krupenkin, Predictive model for ice formation on


Скачать книгу