2D Monoelements. Группа авторов

2D Monoelements - Группа авторов


Скачать книгу
Y., Zhu, C., Liang, Z., Zhang, Z., Nano Res., 7, 6, 853–859, 2014.

      40. Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Shvets, I.V., Science, 331, 6017, 568–571, 2011.

      41. Liu, K.K., Zhang, W., Lee, Y.H., Lin, Y.C., Chang, M.T., Su, C.Y., Lai, C.S., Nano Lett., 12, 3, 1538–1544, 2012.

      42. Cudazzo, P., Attaccalite, C., Tokatly, I.V., Rubio, A., Phys. Rev. Lett., 104, 226804, 2010.

      44. Kopf, M., Eckstein, N., Pfister, D., Grotz, C., Kruger, I., Greiwe, M., Nilges, T., J. Cryst. Growth, 405, 6–10, 2014.

      45. Wei, Q. and Peng, X., Appl. Phys. Lett, 104, 251915, 2014.

      46. Sisakht, E.T., Zare, M.H., Fazileh, F., Phys. Rev. B, 91, 8, 085409, 2015.

      47. Rodin, A.S., Carvalho, A., Castro, A.H., Neto Phys. Rev. Lett., 112, 176801, 2014.

      48. Liang, L., Wang, J., Lin, W., Sumpter, B.G., Meunier, V., Pan, M., Nano Lett., 14, 11, 6400, 2014.

      49. Wang, X., Jones, A.M., Seyler, K.L., Tran, V., Jia, Y., Zhao, H., Xia, F., Nat. Nanotechnol., 10, 6, 517, 2015.

      50. Khan, I. and Hong, J., New Journal of Physics, 17, 2, 023056, 2015.

      51. Dhanabalan, S.C., Ponraj, J.S., Guo, Z., Li, S., Bao, Q., Zhang, H., Adv. Sci., 4, 1600305, 2017.

      52. Cakir, D., Sahin, H., Peeters, F.M., Phys. Rev. B, 90, 20, 205421, 2014.

      53. Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J.O., Narasimha-Acharya, K.L., Blanter, S.I., Zandbergen, H.W., 2D Mater., 1, 2, 025001, 2014.

      54. Rodin, A.S., Carvalho, A., Neto, A.C., Phys. Rev. B, 90, 7, 075429, 2014.

      55. Wang, L., Kutana, A., Zou, X., Yakobson, B.I., Nanoscale, 7, 21, 9746–9751, 2015.

      56. Drissi, L.B., Sadki, S., Sadki, K., J. Phys.: Condens. Matter, 28, 14, 145501, 2016.

      57. Cadelano, E., Palla, P.L., Giordano, S., Colombo, L., Phys. Rev. B, 82, 235414, 2010.

      58. Evans, K.E. and Alderson, A., Adv. Mater., 12, 617, 2000.

      59. Yuan, J., Yu, N., Xue, K., Miao, X., RSC Adv., 7, 8654, 2017.

      60. Wang, G., Loh, G.C., Pandey, R., Karna, S.P., Nanotechnology, 27, 5, 055701, 2015.

      61. Kou, L., Frauenheim, T., Chen, C., J. Phys. Chem. Lett., 5, 15, 2675, 2014.

      62. Wang, H., Wang, X., Xia, F., Wang, L., Jiang, H., Xia, Q., Han, S.J., Nano Lett., 14, 11, 6424, 2014.

      63. Favron, A., Gaufres, E., Fossard, F., Phaneuf-L’Heureux, A.L., Tang, N.Y., Levesque, P.L., Martel, R., Nat. Mater., 14, 8, 826, 2015.

      64. Kim, J.S., Liu, Y., Zhu, W., Kim, S., Wu, D., Tao, L., Akinwande, D., Sci. Rep., 5, 8989, 2015.

      65. Ahmed, T., Balendhran, S., Karim, M.N., Mayes, E.L., Field, M.R., Ramanathan, R., Walia, S., npj 2D Mater. Appl., 18, 13–16, 2017.

      66. Lu, J., Yang, J., Carvalho, A., Liu, H., Lu, Y., Sow, C.H., Acc. Chem. Res., 49, 9, 1806, 2016.

      67. Edmonds, M.T., Tadich, A., Carvalho, A., Ziletti, A., O’Donnell, K.M., Koenig, S.P., Fuhrer, M.S., ACS Appl. Mater. Interfaces, 7, 27, 14557–14562, 2015.

      68. Wang, G., Pandey, R., Karna, S.P., Appl. Physics Lett., 106, 17, 173104, 2015.

      69. Kulish, V.V., Malyi, O.I., Persson, C., Wu, P., Phys. Chem. Chem. Phys., 17, 2, 992–1000, 2015.

      71. Nakada, K. and Ishii, A., Solid State Commun., 151, 13–16, 2011.

      72. Lehtinen, P.O., Foster, A.S., Ayuela, A., Krasheninnikov, A., Nordlund, K., Nieminen, R.M., Phys. Rev. Lett., 91, 017202, 2003.

      73. Wu, M., Liu, E.-Z., Jiang, J.Z., Appl. Phys. Lett., 93, 082504, 2008.

      74. Ziletti, A., Carvalho, A., Campbell, D.K., Coker, D.F., Neto, A.C., Phys. Rev. Lett., 114, 4, 046801, 2015.

      75. Li, Y., Ma, F., Wang, L.W., J. Mater. Chem. A, 6, 17, 7815, 2018.

      76. Li W, W., Yang, Y., Zhang, G. et al., Nano Lett., 15, 3, 1691, 2015.

      77. Yang, G., Fan, X., Liang, Z. et al., RSC Adv., 6, 32, 26540, 2016.

      78. Li, Y., Wu, D., Zhou, Z. et al., J. Phys. Chem. Lett., 3, 16, 2221, 2012.

      79. Sadki, K., Sadki, S., Drissi, L.B., J. Phys. Chem. Solids, 130, 13, 2019.

      80. Yin, H., Zheng, G.P., Gao, J., Wang, Y., Ma, Y., Phys. Chem. Chem. Phys., 19, 40, 27508, 2017.

      81. Sadki, S., Sadki, K., Drissi, L.B., Superlattices Microstruct., 126, 186, 2019.

      82. Peng, X. and Wei, Q., Mater. Res. Express, 1, 4, 045041, 2014.

      83. Lu, Y. and Zhu, X., J. Phys. Chem. A, 123, 1, 21–25, 2018.

      84. Dai, J. and Zeng, X.C., RSC Adv., 4, 89, 48017–48021, 2014.

      85. Noor-A-Alam, M., Kim, H.J., Shin, Y.H., Phys. Chem. Chem. Phys., 16, 6575, 2014.

      86. Li, J., Zhao, T., He, C., Zhang, K., J. Phys. D: Appl. Phys., 51, 12, 12LT01, 2018.

      87. Lee, S., Kang, S.H., Kwon, Y.K., Sci. Rep., 9, 1, 5149, 2019.

      88. Li, X., Mullen, J.T., Jin, Z., Borysenko, K.M., Nardelli, M.B., Kim, K.W., Phys. Rev. B, 87, 11, 115418, 2013.

      89. Liu, T.-H., Chen, Y.-C., Pao, C.-W., Chang, C.-C., Appl. Phys. Lett., 104, 201909, 2014.

      1 *Corresponding author: [email protected]; [email protected]

      Antimonene: A Potential 2D Material

       Shuai Liu, Tianle Zhang and Shengxue Yang*

       School of Materials Science and Engineering, Beihang University, Beijing, China

       Abstract

      Since the two-dimensional antimonene was reported, it has become the focus of theoretical research. The predicted various interesting properties have inspired many experimental scientists to confirm and better understand this material. Recent studies on the preparation and application of such material have yielded many important results. This chapter is mainly on how to produce and apply antimonene experimentally. First, the theoretically calculated fundamental characteristics of antimonene are given. Second, different preparation methods of antimonene from traditional mechanical exfoliation to other novel approaches are listed. Finally, it summarizes the potential applications in several technological fields such as optical, optoelectronic, electronic, and biomedical fields. In addition, it provides insights into further exploration of the diverse properties of antimonene, continuous updating of preparation methods, as well as further development of potential applications, and then looks ahead to the opportunities and challenges of antimonene facing in the future.

      Keywords: Antimonene, structural characteristics, band structure, preparation methods, potential applications


Скачать книгу