2D Monoelements. Группа авторов

2D Monoelements - Группа авторов


Скачать книгу
anharmonic relaxation times of as a function of frequency indicates that the phonon lifetime corresponding to three acoustic modes (ZA, TA, and LA) and the other higher modes of PO is more lower than that of pure phosphorene. This reduction is mainly owing to dangling bond connecting oxygen atom to its phosphorous neighbor which allow to O not only in the optical P-O vibration, but also vibrate along the in-plane directions together with phosphorous atoms contributing to the acoustic modes. It follows that this contribution is responsible for the acoustic phonon softening which decreases the thermal conductivity of PO [87].

Schematic illustration of mode-dependent anharmonic phonon relaxation time for acoustic modes.

      In this chapter, we have presented an overview of pure phosphorene, its geometric structure, its physical properties, its fabrication methods, and several applications. We have also shown thatowing to its puckered structure and its strong anisotropic electronic, mechanical, magnetic, and optical properties, phosphorene constitutes an ideal candidate for potential applications, including gas sensor, field-effect transistor, and solar cell application. Unstable under atmospheric conditions, we have reported phosphorene oxides and demonstrated how O-functionalization is a promising technique to enhance the features of this novel material.

      Lalla Btissam Drissi et al. thank “Académie Hassan II des Sciences et Techniques-Morocco” for financial support.

      1. Bridgman, P.W., Two new modifications of phosphorus. Chem. Soc., 36, 1344–1363, 1914.

      2. Aldave, S.H., Yogeesh, M.N., Zhu, W., Kim, J., Sonde, S.S., Nayak, A.P., Akinwande, D., Characterization and sonochemical synthesis of black phosphorus from red phosphorus. 2D Mater., 3, 1, 014007, 2016.

      3. Morita, A., Semiconducting black phosphorus. Appl. Phys. A Mater. Sci. Process, 39, 4, 227, 1986.

      4. Liu, Y., Qiu, Z., Carvalho, A., Bao, Y., Xu, H., Tan, S.J., Lu, J., Gate-tunable giant stark effect in few-layer black phosphorus. Nano Lett., 17, 3, 1970, 2017.

      6. Liu, H., Du, Y., Deng, Y., Peide, D.Y., Semiconducting black phosphorus: Synthesis, transport properties and electronic applications, Chemical Society Reviews. Chem. Soc. Rev., 44, 9, 2732, 2015.

      7. Hu, W. and Yang, J., Defects in phosphorene. J. Phys. Chem. C, 119, 35, 20474–20480, 2015.

      8. Elahi, M., Khaliji, K., Tabatabaei, S.M., Pourfath, M., Asgari, R., Modulation of electronic and mechanical properties of phosphorene through strain. Phys. Rev. B, 91, 11, 115412, 2015.

      9. Reich, E.S., Phosphorene excites materials scientists. Nat. News, 506, 7486, 19, 2014.

      10. Kou, L., Chen, C., Smith, S.C., Phosphorene: Fabrication, properties, and applications. J. Phys. Chem. Lett., 6, 2794, 2015.

      11. Fei, R.X., Faghaninia, A., Soklaski, R., Yan, J.A., Lo, C., Yang, L., Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett., 14, 6393, 2014.

      12. Srivastava, A., Khan, M.S., Gupta, S.K., Pandey, R., Unique electron transport in ultrathin black phosphorene: Ab-initio study. Appl. Surf. Sci., 356, 881, 2015.

      13. Pan, Y., Wang, Y., Ye, M., Quhe, R., Zhong, H., Song, Z., Lu, J., Monolayer phosphorene–metal contacts. Chem. Mater., 28, 2100, 2016.

      14. Lv, H.Y., Lu, W.J., Shao, D. F., Sun, Y. P., Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys. Rev. B, 90, 8, 085433, 2014.

      15. Qiao, J., Kong, X., Hu, Z.X., Yang, F., Ji, W., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun., 5, 4475, 2014.

      16. Yoo, E., Kim, J., Hosono, E., Zhou, H.S., Kudo, T., Honma, I., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett., 8, 8, 2277, 2008.

      17. Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., Dai, H., Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett., 11, 7, 2644, 2011.

      18. Yin, Y.X., Xin, S., Guo, Y.G., Wan, L.J., Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. Int. Ed., 52, 50, 13186, 2013.

      19. Tran, V., Soklaski, R., Liang, Y., Yang, L., Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89, 235319, 2014.

      20. Sadki, S. and Drissi, L.B., Tunable optical and excitonic properties of phosphorene via oxidation. J. Phys.: Condens. Matter, 30, 25, 255703, 2018.

      22. Peng, X., Wei, Q., Copple, A., Phys. Rev. B, 90, 085402, 2014.

      23. Drissi, L.B., Sadki, S., Sadki, K., Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. J. Phys. Chem. Solids, 112, 137–142, 2018.

      24. Carvalho, A., Wang, M., Zhu, X., Rodin, A.S., Su, H., Neto, A.H.C., Phosphorene: From theory to applications. Nat. Rev. Mater., 1, 16061, 2016.

      25. Sorkin, V., Cai, Y., Ong, Z., Zhang, G., Zhang, Y.W., Recent advances in the study of phosphorene and its nanostructures. Crit. Rev. Solid State Mater. Sci., 42, 1, 1, 2017.

      26. Hu, T. and Dong, J., Two new phases of monolayer group-IV monochalcogenides and their piezoelectric properties. Phys. Chem. Chem. Phys., 18, 47, 32514, 2016.

      27. Koenig, S.P., Doganov, R.A., Schmidt, H., Castro Neto, A.H., Oezyilmaz, B., Electric field effect in ultrathin black phosphorus. Appl. Physics Lett., 104, 10, 103106, 2014.

      28. Cho, K., Yang, J., Lu, Y., Phosphorene: An emerging 2D material. J. Mater. Res., 32, 15, 2839–2847, 2017.

      29. Wang, G., Slough, W.J., Pandey, R., Karna, S.P., Degradation of phosphorene in air: Understanding at atomic level. 2D Mater., 3, 2, 025011, 2016.

      30. Wang, G., Pandey R., Karna S.P., J. Appl. Phys., 118, 234304, 2015.

      31. Hao, F. and Chen, X., J. Appl. Phys., 118, 234304, 2015.

      32. Ziletti, A., Carvalho, A., Trevisanutto, P.E., Campbell, D.K., Coker, D.F., Neto, A.C., Phys. Rev. B, 91, 8, 085407, 2015.

      33. Pang, J., Bachmatiuk, A., Yin, Y., Trzebicka, B., Zhao, L., Fu, L., Rummeli, M.H., Adv. Energy Mater., 8, 8, 1702093, 2018.

      34. Khandelwal, A., Mani, K., Karigerasi, M.H., Lahiri, I., Mater. Sci. Eng.: B, 221, 17–34, 2017.

      35. Geim, A.K., Rev. Mod. Phys., 83, 3, 851, 2011.

      36. Novoselov, K.S., Rev. Mod. Phys., 83, 3, 837, 2011.

      37. Batmunkh, M., Bat-Erdene, M., Shapter, J.G., Adv. Energy Mater., 8, 5, 1701832, 2018.

      38. Bagheri, S., Mansouri, N., Aghaie, E., Int. J. Hydrogen Energy, 41, 7, 4085–4095, 2016.

      39.


Скачать книгу