Biopolymers for Biomedical and Biotechnological Applications. Группа авторов
medicine. In: Natural‐Based Polymers for Biomedical Applications (eds. R.L. Reis, N.M. Neves, J.F. Mano, et al.), 485–514. Woodhead Publishing.
145 145 Usta, U. and Asmatulu, R. (2015). Hydrogels in various biomedical applications. In: Polymer Science: Research Advances, Practical Applications and Educational Aspects (eds. A. Méndez‐Vilas and A. Solano), 248–257. Formatex Research Center.
146 146 Deen, G.R. and Loh, X.J. (2018). Stimuli‐responsive cationic hydrogels in drug delivery applications. Gels 4 (1): 1–13.
147 147 Soppimath, K.S., Aminabhavi, T.M., Dave, A.M. et al. (2002). Stimulus‐responsive “smart” hydrogels as novel drug delivery systems. Drug Development and Industrial Pharmacy 28 (8): 957–974.
148 148 Rudzinski, W.E., Dave, A.M., Vaishnav, U.H. et al. (2002). Hydrogels as controlled release devices in agriculture. Designed Monomers and Polymers 5 (1): 39–65.
149 149 Ferris, C.J., Gilmore, K.J., Wallace, G.G., and Panhuis, M. (2013). Modified gellan gum hydrogels for tissue engineering applications. Soft Matter 9: 3705–3711.
150 150 Graham, S., Marina, P.F., and Blencowe, A. (2019). Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydrate Polymers 207: 143–159.
151 151 Giavasis, I., Harvey, L.M., and McNeil, B. (2000). Gellan gum. Critical Reviews in Biotechnology 20 (3): 177–211.
152 152 Matricardi, P., Cencetti, C., Ria, R. et al. (2009). Preparation and characterization of novel gellan gum hydrogels suitable for modified drug release. Molecules 14 (9): 3376–3391.
153 153 Gong, Y., Wang, C., Lai, R.C. et al. (2009). An improved injectable polysaccharide hydrogel: modified gellan gum for long‐term cartilage regeneration in vitro. Journal of Materials Chemistry 19: 1968–1977.
154 154 Bhattarai, N., Gunn, J., and Zhang, M. (2010). Chitosan‐based hydrogels for controlled localized drug delivery. Advanced Drug Delivery Reviews 62 (1): 83–89.
155 155 Jayakumar, R., Prabaharan, M., Kumar, P.T.S. et al. (2011). Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances 29 (3): 322–337.
156 156 Tahrir, F.G., Ganji, F., and Ahooyi, T.M. (2015). Injectable thermosensitive chitosan/glycerophosphate‐based hydrogels for tissue engineering and drug delivery applications: a review. Recent Patents on Drug Delivery & Formulation 9 (2): 107–120.
157 157 Chenite, A., Chaput, C., Wang, D. et al. (2000). Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21 (21): 2155–2161.
158 158 Cao, C., Chunhong, Y., Hu, Z., and Zhou, S. (2015). Potential application of injectable chitosan hydrogel treated with siRNA in chronic rhinosinusitis therapy. Molecular Medicine Reports 12 (5): 6688–6694.
159 159 Van Tomme, S.R. and Hennink, W.E. (2007). Biodegradable dextran hydrogels for protein delivery applications. Expert Review of Medical Devices 4 (2): 147–164.
160 160 Huh, K.M., Ooya, T., Lee, W.K. et al. (2001). Supramolecular‐structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran and α‐cyclodextrin. Macromolecules 34 (25): 8657–8662.
161 161 Pescosolido, L., Schuurman, W., Malda, J. et al. (2011). Hyaluronic acid and dextran‐based semi‐IPN hydrogels as biomaterials for bioprinting. Biomacromolecules 12 (5): 1831–1838.
162 162 Koop, H.S., Freitas, R.A., Souza, M.M. et al. (2015). Topical curcumin‐loaded hydrogels obtained using galactomannan from Schizolobium parahyba and xanthan. Carbohydrate Polymers 116: 229–236.
163 163 Shalviri, A., Liu, Q., Abdekhodaie, M.J., and Wu, X.Y. (2010). Novel modified starch‐xanthan gum hydrogels for controlled drug delivery: synthesis and characterization. Carbohydrate Polymers 79 (4): 898–907.
164 164 Larguinho, M., Canto, R., Cordeiro, M. et al. (2015). Gold nanoprobe‐based non‐crosslinking hybridization for molecular diagnostics. Expert Review of Molecular Diagnostics 15 (10): 1355–1368.
165 165 Laurent, S., Forge, D., Port, M. et al. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemistry Reviews 108: 2064–2110.
166 166 Camargo, P.H.C., Satyanarayana, K.G., and Wypych, F. (2009). Nanocomposites: synthesis, structure, properties and new application opportunities. Materials Research 12: 1–39.
167 167 Wang, S.‐F., Shen, L., Zhang, W.‐D., and Tong, Y.‐J. (2005). Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6: 3061–3072.
168 168 Dias, A.M.G.C., Hussain, A., Marcos, A.S., and Roque, A.C.A. (2011). A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology Advances 29: 142–155.
169 169 Swierczewska, M., Han, H.S., Kim, K. et al. (2016). Polysaccharide‐based nanoparticles for theranostic nanomedicine. Advanced Drug Delivery Reviews 99: 70–84.
170 170 Zhao, X., Lv, L., Pan, B. et al. (2011). Polymer‐supported nanocomposites for environmental application: a review. Chemical Engineering Journal 170: 381–394.
171 171 Escárcega‐González, C.E., Garza‐Cervantes, J.A., Vázquez‐Rodríguez, A., and Morones‐Ramírez, J.R. (2018). Bacterial exopolysaccharides as reducing and/or stabilizing agents during synthesis of metal nanoparticles with biomedical applications. International Journal of Polymer Science 2018: 1–15.
172 172 Özcan, E. and Öner, E.T. (2015). Microbial production of extracellular polysaccharides from biomass sources. In: Polysaccharides (eds. K.G. Ramawat and J.‐M. Mérillon), 161–184. Switzerland: Springer International Publishing.
173 173 Hussain, A., Zia, K.M., Tabasum, S. et al. (2017). Blends and composites of exopolysaccharides; properties and applications: a review. International Journal of Biological Macromolecules 94: 10–27.
174 174 Rossi, F. and De Philippis, R. (2016). Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, role and enzymes and genes involved in their biosynthesis. In: The Physiology of Microalgae. Developments in Applied Phycology (eds. M. Borowitzka, J. Beardall and J. Raven), 565–590. Springer International Publishing.
175 175 El‐Hack, M.E.A., Abdelnour, S., Alagawany, M. et al. (2019). Microalgae in modern cancer therapy: current knowledge. Biomedicine & Pharmacotherapy 111: 42–50.
176 176 Roy, S.S. and Pal, R. (2015). Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics. Proceedings of the Zoological Society 68 (1): 1–8.
177 177 Spolaore, P., Joannis‐Cassan, C., Duran, E., and Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101 (2): 87–96.
178 178 Nicoletti, M. (2016). Microalgae nutraceuticals. Food 5 (3): 54.
179 179 Stolz, P. and Obermayer, P. (2005). Manufacturing microalgae for skin care. Cosmetics & Toiletries 120 (3): 99–106.
180 180 Chen, C.‐Y., Zhao, X.‐Q., Yen, H.‐W. et al. (2013). Microalgae‐based carbohydrates for biofuel production. Biochemical Engineering Journal 78: 1–10.
181 181 Markou, G. and Nerantzis, E. (2013). Microalgae for high‐value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnology Advances 31 (8): 1532–1542.
182 182 Delattre, C., Pierre, G., Laroche, C., and Michaud, P. (2016). Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology Advances 34 (7): 1159–1179.
183 183 Raposo, M.J., de Morais, A., and Morais, R. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs 13 (5): 2967–3028.
184 184 Singh, S., Kant, C., Yadav, R.K. et al. (2019). Chapter 17: Cyanobacterial exopolysaccharides: composition, biosynthesis, and biotechnological applications. In: Cyanobacteria (eds. A.K. Mishra, D.K. Tiwari and A.N.