Cases in Medical Microbiology and Infectious Diseases. Melissa B. Miller

Cases in Medical Microbiology and Infectious Diseases - Melissa B. Miller


Скачать книгу
well recognized that the capsular polysaccharide allows the pneumococcus to evade phagocytosis.

      5. Currently, there are two vaccines licensed for prevention of pneumococcal disease, a 23-valent polysaccharide vaccine and a 13-valent conjugate vaccine. The 23-valent vaccine is used in adults, while the 13-valent conjugated vaccine was developed for use in children <2 years of age. Young children are not able to reliably mount a T-cell-independent immune response, the type of immune response necessary to produce antibodies against polysaccharide antigens. However, they are able to mount a T-cell-dependent immune response.

      The 13-valent pneumococcal vaccine is also recommended for adults, especially immunocompromised individuals. Currently, many clinicians are still using the 23-valent vaccine in adults >60 years. In adults, the 23-valent polysaccharide vaccine has been used successfully for many years. The efficacy of the 23-valent vaccine in adults is not as high (efficacy ranges from 50 to 90% in different populations) as that of the 13-valent conjugate vaccine in children.

      A conjugate vaccine is one in which a polysaccharide antigen is coupled to a carrier protein. The coupling of a polysaccharide antigen to a protein creates a “new” antigen. This new antigen stimulates a T-cell-dependent immune response (see case 45 for further details). Therefore, the conjugated pneumococcal vaccine results in a protective immune response to capsular types present in the vaccine and perhaps to other related serotypes in children <2 years old. It has been shown to be highly efficacious (>95%) in preventing invasive pneumococcal disease in this age group. It has been less effective in preventing a common pneumococcal infection in this age group, otitis media. The conjugated pneumococcal vaccine is now recommended for use in all children <2 years of age.

      The widespread use of the 13-valent conjugated pneumococcal vaccine in children has resulted in declines in the two major populations with invasive pneumococcal disease: those <5 and those >65 years of age. Herd immunity clearly is playing a role in this decline and is discussed in greater detail in case 45.

      An additional vaccine strategy that might be helpful in protecting this patient from pneumococcal disease would be to vaccinate him against influenza virus. Influenza infection has been recognized as being an important predisposing factor for the development of pneumococcal pneumonia.

      Alternatively, prophylactic antimicrobials have been used in selected populations, such as sickle-cell patients with a history of recurrent invasive pneumococcal infections. Given the problem of emerging drug resistance in the pneumococci (see below), this is probably a preventive strategy that is becoming less efficacious.

      6. There are four potential explanations for why patients can have repeated episodes of infection with the same serotype. The first three fall under the category of inadequate treatment; the fourth involves reinfection.

      In terms of inadequate treatment, the patient may have been treated with an antimicrobial to which the infecting organism was not susceptible. Given the increasing trend of multidrug resistance in pneumococci, this is a reasonable explanation. Susceptibility testing of this organism revealed it to be pan-sensitive, meaning it was susceptible to all antimicrobials against which it was tested, including the antimicrobial with which he was treated. The second explanation is that the patient did not receive antimicrobials for a sufficient period of time to eliminate the organism. If hospitalized, it is likely that the patient would receive appropriate antimicrobial therapy during his stay. However, in the managed care era, hospital stays are becoming shorter and shorter. Our patient received 4 days of intravenous antimicrobials in the hospital and then oral antibiotics prescribed for use after discharge. If he failed to take his oral antibiotics, i.e., was noncompliant, his infection may have been inadequately treated, contributing to a relapse. A third possibility is that he had an undrained focus of infection that the antimicrobials did not adequately penetrate. In pneumococcal pneumonia, highly viscous pleural exudates may form that antimicrobials cannot penetrate. Removal of these exudates by drainage may be required for treatment of severe infections. Occasionally, drainage of exudates is not possible percutaneously. In these cases, a surgical procedure may be necessary to remove this focus of infection.

      1. Bartlett JG. 2011. Diagnostic tests for agents of community-acquired pneumonia. Clin Infect Dis 52(Suppl 4):S296–S304.

      2. File TM Jr. 2010. Case studies of lower respiratory tract infections: community-acquired pneumonia. Am J Med 123(4 Suppl):S4–S15.

      3. Griffin MR, Zhu Y, Moore MR, Whitney CG, Grijalva CG. 2013. U.S. hospitalizations for pneumonia after a decade of pneumococcal vaccination. N Engl J Med 369:155–163.

      4. Jedrzejas MJ. 2001. Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev 65:187–207.

      5. Musher DM. 2012. Editorial commentary: should 13-valent protein-conjugate pneumococcal vaccine be used routinely in adults? Clin Infect Dis 55:265–267.


Скачать книгу