Phytomicrobiome Interactions and Sustainable Agriculture. Группа авторов
production and antimicrobial activity of naphthoquinones in roots of Lithospermumerythrorhizon. Plant Physiol. 119: 417–428.
11 Caetano‐Anolles, G., Crist‐Estes, D.K., and Bauer, D.W. (1988). Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J. Bacteriol. 170: 3164–3169.
12 Canarini, A., Kaiser, C., Merchant, A. et al. (2019). Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10: 157. https://doi.org/10.3389/fpls.2019.00157.
13 Carlsen, S.C.K., Pedersen, H.A., Spliid, N.H., and Fomsgaard, I.S. (2012). Fate in soil of flavonoids released from white clover (Trifoliumrepens L.). Appl. Environ. Soil Sci. 2012: 1–10.
14 Carvalhais, L.C., Dennis, P.G., Fedoseyenko, D. et al. (2010). Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J. Plant Nutr. Soil Sci. 174: 3–11.
15 Carvalhais, L.C., Dennis, P.G., Badri, D.V. et al. (2015). Linking jasmonic acid signalling, root excudates, and rhizosphere microbiomes. Mol. Plant Microb. Interact. 28 (9): 1049–1058.
16 Chaparro, J.M., Badri, D.V., Bakker, M.G. et al. (2013). Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8 (2): e55731. https://doi.org/10.1371/journal.pone.0055731.
17 Dakora, F.D. (2000). Commonality of root nodulation signals and nitrogen assimilation in tropical grain legumes belonging to the tribe Phaseoleae. Aust. J. Plant Physiol. 27: 885–892.
18 De Weert, S., Vermeiren, H., Mulders, I.H.M. et al. (2002). Flagella‐driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant Microbe Interact. 15 (11): 1173–1180.
19 Emily, M., Maureen, M., Carlos, M., and Maria, D.R. (2013). Development and application of crop exudates specific aptamers. J. Biomol. Struct. Dyn. 31 (sup1): 89–89.
20 Gargallo‐Garriga, A., Preece, C., Sardans, J. et al. (2018). Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8: 12696. https://doi.org/10.1038/s41598‐018‐30150‐0.
21 Gfeller, A., Glauser, G., Etter, C. et al. (2018). Fagopyrum esculentum alters its root exudation after Amaranthus retroflexus recognition and suppresses weed growth. Front. Plant Sci. 9: 50. https://doi.org/10.3389/fpls.2018.00050.
22 Gifford, I., Battenberg, K., Vaniya, A. et al. (2018). Distinctive patterns of Flavonoid biosynthesis in roots and nodules of Datiscaglomerata and Medicago spp. revealed by metabolomic and gene expression profiles. Front. Plant Sci. 9: 1463. https://doi.org/10.3389/fpls.2018.01463.
23 Gomez‐Roldan, V., Soraya, F., Philip, B.B. et al. (2008). Strigolactone inhibition of shoot branching. Nature 455: 189–194.
24 Guo, J., McCulley, R.L., and McNear, D.H.J. (2015). Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Front. Plant Sci. 6: 183. https://doi.org/10.3389/fpls.2015.00183.
25 Hoysted, G.A., Bell, C.A., Lilley, C.J., and Urwin, P.E. (2018). Aphid colonization affects potato root exudate composition and the hatching of a soil borne pathogen. Front. Plant Sci. 9: 1278. https://doi.org/10.3389/fpls.2018.01278.
26 Huang, X.F., Chaparro, J.M., Reardon, K.F. et al. (2014). Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92: 267–275.
27 Jones, D.L. and Darrah, P.R. (1995). Influx and efflux of organic acids across the soil root interface of Zea mays L. and its implications in rhizosphere C flow. Plant and Soil 173: 103–109.
28 Karlowsky, S., Augusti, A., Ingrisch, J. et al. (2018). Drought‐induced accumulation of root exudates supports post‐drought recovery of microbes in mountain grassland. Front. Plant Sci. 9: 1593. https://doi.org/10.3389/fpls.2018.01593.
29 Kidd, P.S., Llugany, M., Poschenrieder, C. et al. (2001). The role of root exudates in aluminium resistance and silicon‐induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52: 1339–1352.
30 Kuijken, R.C., van Eeuwijk, F.A., Marcelis, L.F., and Bouwmeester, H.J. (2015). Root phenotyping: from component trait in the lab to breeding. J. Exp. Bot. 66 (18): 5389–5401.
31 Lagrange, H., Jay‐Allgmand, C., and Lapeyrie, F. (2001). Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol. 149: 349–355.
32 Lagunas, B., Schäfer, P., and Gifford, M.L. (2015). Housing helpful invaders: the evolutionary and molecular architecture underlying plant root‐mutualist microbe interactions. J. Exp. Bot. 66 (8): 2177–2186.
33 Lambert, M.R. (2015). Clover root exudate produces male‐biased sex ratios and accelerates male metamorphic timing in wood frogs. R. Soc. Open Sci. 2 (12): 1–8. https://doi.org/10.1098/rsos.150433.
34 Lareen, A., Burton, F., and Schafer, P. (2016). Plant root‐microbe communication in shaping root microbiomes. Plant Mol. Biol. 90 (6): 575–587.
35 Lima, L.D.S., Olivares, F.L., de Oliveira, R.R. et al. (2014). Root exudate profiling of maize seedlings inoculated with Herbaspirillumseropedicae and humic acids. Chem. Biol. Technol. Agric. 23 (1): 1–18.
36 Lopez‐Farfan, D., Reyes‐Darias, J.A., Matilla, M.A., and Krell, T. (2019). Concentration dependent effect of plant root exudates on the chemosensory systems of Pseudomonas putida KT2440. Front. Microbiol. 10: 78. https://doi.org/10.3389/fmicb.2019.00078.
37 Lu, H., Jianteng, S., and Lizhong, Z. (2017). The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Sci. Rep. 7: 7130.
38 Luo, Q., Wang, S., Sun, L., and Wang, H. (2017). Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC‐MS. Sci. Rep. 7: 39878.
39 Massalha, H., Korenblum, E., Tholl, D., and Aharoni (2017). Small molecules below‐ground: the role of specialized metabolites in the rhizosphere. Plant J. 90 (4): 788–807.
40 Micallef, S.A., Shiaris, M.P., and Colón‐Carmona, A. (2009). Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J. Exp. Bot. 60 (6): 1729–1742.
41 Monchgesang, S., Strehmel, N., Schmidt, S. et al. (2016). Natural variation of root exudates in Arabidopsis thaliana‐linking metabolomic and genomic data. Sci. Rep. 6: 29033. https://doi.org/10.1038/srep29033.
42 Neal, A.L., Ahmad, S., Gordon‐Weeks, R., and Ton, J. (2012). Benzoxazinoids in root exudates of maize attracts Pseudomonas putida to the rhizosphere. PLoS One 7: e35498. https://doi.org/10.1371/journal.pone.0035498.
43 Neumann, G., Bott, S., Ohler, M.A. et al. (2014). Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front. Microbiol. 5: 2. https://doi.org/10.3389/fmicb.2014.00002.
44 Oburger, E., Dell Mour, M., Hann, S. et al. (2013). Evaluation of a novel tool for sampling root exudates from soil‐grown plants compared to conventional techniques. Environ.