Methodologies in Amine Synthesis. Группа авторов
1 1 (a) Canè, F., Brancaleoni, D., Dembech, P. et al. New developments on organocopper‐mediated electrophilic amination. In: New Horizons in Organic Synthesis, 118–129. New Age International Publishers.(b) Bernardi, P., Dembech, P., Ricci, A., and Seconi, G. (1999). The Journal of Organic Chemistry 64: 641–643, and references therein.(c) Corpet, M. and Gosmini, C. (2014). Synthesis‐Stuttgart 46: 2258–2271.
2 2 Erdik, E. and Ay, M. (1989). Chemical Reviews 89: 1947–1980.
3 3 Dong, X., Liu, Q., Dong, Y., and Liu, H. (2017). Chemistry (Easton). 23: 2481–2511.
4 4 Zhou, Z. and Kürti, L. (2019). Synlett 30: 1525–1535.
5 5 Tsutsui, H., Ichikawa, T., and Narasaka, K. (1999). Bulletin of the Chemical Society of Japan 72: 1869–1878.
6 6 Tsutsui, H., Hayashi, Y., and Narasaka, K. (1997). Chemistry Letters 26: 317–318.
7 7 Erdik, E. and Daşkapan, T. (1999). Synthetic Communications 29: 3989–3997.
8 8 Erdik, E. and Daşkapan, T. (1999). Journal of the Chemical Society, Perkin Transactions 1 21: 3139–3142.
9 9 Berman, A.M. and Johnson, J.S. (2004). Journal of the American Chemical Society 126: 5680–5681.
10 10 Berman, A.M. and Johnson, J.S. (2006). The Journal of Organic Chemistry 71: 219–224.
11 11 Garcia‐Lopez, J.A., Cetin, M., and Greaney, M.F. (2015). Angewandte Chemie (International Ed. in English) 54: 2156–2159.
12 12 Zhou, S., Yang, Z., Chen, X. et al. (2015). The Journal of Organic Chemistry 80: 6323–6328.
13 13 Nguyen, M.H. and Smith, A.B. (2013). Organic Letters 15: 4872–4875.
14 14 Zhou, Z., Ma, Z., Behnke, N.E. et al. (2017). Journal of the American Chemical Society 139: 115–118.
15 15 Tezuka, N., Shimojo, K., Hirano, K. et al. (2016). Journal of the American Chemical Society 138: 9166–9171.
16 16 Matsuda, N., Hirano, K., Satoh, T., and Miura, M. (2012). Angewandte Chemie (International Ed. in English) 51: 3642–3645.
17 17 Miki, Y., Hirano, K., Satoh, T., and Miura, M. (2013). Organic Letters 15: 172–175.
18 18 Miura, T., Morimoto, M., and Murakami, M. (2012). Organic Letters 14: 5214–5217.
19 19 Matsuda, N., Hirano, K., Satoh, T., and Miura, M. (2012). Angewandte Chemie (International Ed. in English) 51: 11827–11831.
20 20 Matsuda, N., Hirano, K., Satoh, T., and Miura, M. (2013). Journal of the American Chemical Society 135: 4934–4937.
21 21 Miki, Y., Hirano, K., Satoh, T., and Miura, M. (2013). Angewandte Chemie (International Ed. in English) 52: 10830–10834.
22 22 Zhu, S., Niljianskul, N., and Buchwald, S.L. (2013). Journal of the American Chemical Society 135: 15746–15749.
23 23 Shi, S.L. and Buchwald, S.L. (2015). Nature Chemistry 7: 38–44.
24 24 Matsuda, N., Hirano, K., Satoh, T., and Miura, M. (2012). The Journal of Organic Chemistry 77: 617–625.
25 25 Shen, K. and Wang, Q. (2015). Chemical Science 6: 4279–4283.
26 26 Hemric, B.N., Shen, K., and Wang, Q. (2016). Journal of the American Chemical Society 138: 5813–5816.
27 27 Ye, Z. and Dai, M. (2015). Organic Letters 17: 2190–2193.
28 28 Matsuda, N., Hirano, K., Satoh, T., and Miura, M. (2011). Organic Letters 13: 2860–2863.
29 29 Yotphan, S., Beukeaw, D., and Reutrakul, V. (2013). Tetrahedron 69: 6627–6633.
30 30 Zhu, C., Yi, M., Wei, D. et al. (2014). Organic Letters 16: 1840–1843.
31 31 Johnson, J.S. and Berman, A.M. (2005). Synlett 11: 1799–1801.
32 32 Barker, T.J. and Jarvo, E.R. (2009). Journal of the American Chemical Society 131: 15598–15599.
33 33 Lutter, F.H., Graßl, S., Grokenberger, L. et al. (2019). ChemCat Chem 11: 5188–5197.
34 34 Yoo, E.J., Ma, S., Mei, T.S. et al. (2011). Journal of the American Chemical Society 133: 7652–7655.
35 35 He, J., Shigenari, T., and Yu, J.Q. (2015). Angewandte Chemie International Edition 54: 6545–6549.
36 36 Shang, M., Zeng, S.‐H., Sun, S.‐Z. et al. (2013). Organic Letters 15: 5286–5289.
37 37 Dong, Z. and Dong, G. (2013). Journal of the American Chemical Society 135: 18350–18353.
38 38 Huehls, C.B., Lin, A., and Yang, J. (2014). Organic Letters 16: 3620–3623.
39 39 Dequirez, G., Pons, V., and Dauban, P. (2012). Angewandte Chemie (International Ed. in English) 51: 7384–7395.
40 40 Shimbayashi, T., Sasakura, K., Eguchi, A. et al. (2019). Chemistry (Easton). 25: 3156–3180.
41 41 Starkov, P., Jamison, T.F., and Marek, I. (2015). Chemistry (Easton). 21: 5278–5300.
42 42 Kwart, H. and Khan, A.A. (1967). Journal of the American Chemical Society 89: 1951–1953.
43 43 Jat, J.L., Paudyal, M.P., Gao, H. et al. (2014). Science 343: 61–65.
44 44 Nicolaou, K.C., Rhoades, D., Wang, Y. et al. (2017). Journal of the American Chemical Society 139: 7318–7334.
45 45 Ma, Z., Zhou, Z., and Kürti, L. (2017). Angewandte Chemie, International Edition 56: 9886–9890.
46 46 Strom, A.E. and Hartwig, J.F.J. (2013). Organic Chemistry 78: 8909–8914.
47 47 Paudyal, M.P., Adebesin, A.M., Burt, S.R. et al. (2016). Science 353: 1144.
48 48 Zhu, C., Li, G., Ess, D.H. et al. (2012). Journal of the American Chemical Society 134: 18253–18256.
49 49 Gao, H., Zhou, Z., Kwon, D.‐H. et al. (2017). Nature Chemistry 9: 681–688.
50 50 Behnke, N.E., Kielawa, R., Kwon, D.‐H. et al. (2018). Organic Letters 20: 8064–8068.
51 51 Farndon, J.J., Young, T.A., and Bower, J.F. (2018). Journal of the American Chemical Society 140: 17846–17850.
52 52 Zhou, Z., Cheng, Q.‐Q., and Kürti, L. (2019). Journal of the American Chemical Society 141: 2242–2246.
53 53 Cheng, Q.‐Q., Zhou, Z., Jiang, H. et al. (2020). Nature Catalysis 3: 386–392.
2 Remote Functionalizations Using Nitrogen Radicals in H‐Atom Transfer (HAT) Reactions
Ji Hye Kim, Elizabeth M. Dauncey, and Daniele Leonori
University of Manchester, Department of Chemistry, Oxford Road, Manchester, M13 9PL, UK
2.1 Introduction
Nitrogen‐containing molecules represent a central class of compounds with applications spanning therapeutic agents, agrochemicals, food additives, and materials. Chemical methodologies able to streamline the synthesis and modification of these molecules underpin the development of high‐value products central to the well‐being of our society [1].
Nitrogen radicals are reactive intermediates with powerful applications to the synthesis of nitrogenated molecules [2]. Their reactivity can be used for direct C—N bond formation via exo‐trig cyclization (Scheme 2.1a) and addition to electron‐rich π‐system (Scheme 2.1b) or for remote sp3 carbon functionalization, exploiting their ability to partake in radical transpositions [3, 4]. From this perspective, there are two types of processes that can be used, β‐fission (Scheme 2.1c) and intramolecular 1,5‐H‐atom transfer (1,5‐HAT)