Aether and Gravitation. William George Hooper
were created, and this is one of the most striking suggestions with reference to the Vortex Atom theory of matter. It remains to be seen whether in the universe we have such a medium as a perfect fluid.
Sir Wm. Thompson has applied the Vortex Atom theory of matter to the Aether, but from mathematical calculation he was unable to arrive at a satisfactory conclusion as to the Aether being composed of vortex atoms.
Another remarkable property belonging to these rings, lies in the fact that they cannot be cut in two. It will be found that when the knife is brought near to them, they seem to recoil from the knife. In that sense, it is literally an atom, a thing which cannot be cut in two.
The Vortex Atom has many recommendations in its favour. Many of the most important properties of matter are possessed by it, as for example indestructibility, elasticity, inertia, compressibility, and its incapability to be cut in two. Further, it may be linked with another ring, and so give the basis to the combining properties of atomic weights.
The Vortex Atom theory is simple in character, as it does not postulate any extravagant hypothesis, but makes use of the Aether as the common basis for all matter, simply stating that this property of rotation may be the basis of all that we call matter. We shall further consider the relation of the Vortex Atom to matter, when we deal with the constitution of matter and the unity of the universe.
Art. 35. Elements of Matter.--As is well known, modern chemistry has succeeded in reducing all the complex forms of matter in Nature into a number of simple substances, which are called elements. Of these elements about seventy are at present known, some of which, however, are very rare. An element therefore is a simple substance which cannot be decomposed by any known force or process, as heat or electricity, into other elements.
There are, however, only about fourteen of these elements that enter largely into the constitution of the earth, the most common being oxygen and silicon. By the use of the spectroscope, it has been proved that many of these elements, as for example oxygen, hydrogen, sodium and calcium, exist in the sun and stars, as well as in the most distant nebulae. Most of the elementary bodies are to be found in a gaseous form as hydrogen, oxygen, fluorine and chlorine, though it has been found possible to liquefy even these gases. Thus we see that matter may be roughly divided into three states, viz. solid, liquid, or gaseous.
The condition in which the substance is found depends upon its temperature and pressure. An example of matter in its three stages is best shown in the case of water, where in the solid condition we have it as ice, in the liquid condition as water, and in the gaseous condition as steam.
By recent researches it has been found possible to liquefy gases at a very low temperature and increased pressure, with the result that now nearly all known gases as hydrogen, oxygen, and carbonic acid are to be obtained in liquid form. By still more recent experiments made by Professor Dewar, it has even become possible to liquefy the air we breathe, with the result that at a temperature of about 270 degrees below freezing-point and at an increased pressure, the otherwise invisible and gaseous air may be changed into a liquid, and poured out from one vessel into another in the same way that water can be poured out. A vessel, however, at the ordinary temperature into which such liquid air is poured, would be so hot compared with the coldness of the liquid air, that as soon as the exceedingly cold liquid air came into contact with the vessel, the comparatively hot vessel would make the liquid air to boil.
Art. 36. Three Divisions of Matter.--Matter has been divided into three divisions, viz. solid, liquid, and gaseous. These divisions are each known by characteristic qualities, which separate the one division from another. At the same time, it is possible for matter to pass from one division into another, as for example in the case of water, which may exist in solid, liquid, and gaseous form. In view of the recent researches of Sir. Wm. Crookes and Professor J. J. Thompson, it is very probable that before long we shall have to add a fourth division to matter, which we should have to call ultra-gaseous form, or it may possibly be the aetherial form. If it should prove to be true that Aether is matter, and possesses the essential qualities of matter as suggested by Lord Kelvin, then certainly we shall have reached the boundary of another great division of matter, and our conception of the divisions of matter will have to be enlarged to take in that form, so that matter would then be divided into four great divisions, viz. solid, liquid, gaseous, and aetherial.
We will now consider the three groups as at present recognized.
Solid.--Examples of solid bodies are common and familiar, and are typified by such things as iron, silver, copper, and lead. The chief characteristic of this condition of matter is that its condition or state is fixed, and cannot be altered without the expenditure of heat or electricity or some other form of energy.
All solid elementary substances, with the exception of carbon, can be melted or reduced to a molten condition, although some of them require a very high temperature to effect this reduction, as, for example, platinum. When a still higher temperature is applied, the metals may be vaporized, or reduced from a molten state to that of a vaporous condition. In the case of solids, the atoms have not a free path in which to move. It must not be thought, however, that the atoms of a solid are motionless, as there is nothing absolutely motionless in the universe. In the case of the solid, the molecules which compose it, preserve their relative position and are linked together in relation to each other by the force of Cohesion.
Liquid.--When matter is in a liquid condition, as, for example, water and oil, the condition of its molecules are not so fixed and stable as they are in the solid state. The molecules can move freely about one another, and their freedom is increased compared with their condition when in the solid state.
As already indicated, the reduction of a solid body to a liquid or molten state may be effected by heat. When heat is applied to a solid body, several results follow, each of which is the outcome of the other.
1. There is an increase of temperature which is due to the increased energy of the molecules, through the added heat.
2. There is an enlargement of the volume or size of the body, and if the addition of heat be continued, the molecular forces which hold the molecules together are broken down, and then the molecules, loosened from those forces which in the solid state have bound them together, begin to move about with greater freedom, and thus give rise to the molten condition of metals, or liquid condition of water. Thus, it is the heat which has set the atoms which compose the molecules in motion. The atoms of the solid have absorbed the heat, and the heat which has thus been absorbed has imparted vibratory energy to the atoms, which they did not possess before. Now when a substance is in the liquid state, the atoms of that substance have not only a vibratory motion, but have also a translatory motion, so that they can move in and out among one another. This is proved by the phenomenon of diffusion, where we have the case of two different-coloured liquids, for example, intermingling with each other, which is conclusive evidence of the translatory motion of the atoms in liquids.
Gaseous.--The third state in which matter is found is the gaseous state. In this condition, the particles of matter which form the gas have the greatest possible freedom of movement, and are able to move about with inconceivable velocity. There is abundant evidence to prove that gases consist of particles of matter which are perfectly free, and are able to fly about in all directions. The simplest proof is obtained by mixing two gases together, as, for example, when any gaseous substance is allowed to mix with the air of a room, when we find that the particular gas soon mixes itself thoroughly with all the air in the room. This process of mixing is known as Diffusion, and the lighter a gas is, the more quickly does it diffuse itself. The rate of movement of the various particles is varied, by reason of the encounters which each particle undergoes from time to time. Through experiments made by Joule, he arrived at the conclusion that particles of hydrogen attained a velocity of 6055 feet per second at 0° C., which is a velocity much greater than that of a cannon-ball. In spite of the enormous velocity with which a particle of hydrogen would move, there are such a large number of particles in a single cubic inch of space, that no one particle has an absolutely free path from the one side of the enclosed space to the other. To this constant movement of the individual particles is due the elasticity or pressure of gases. The outward pressure which they exert