.

 -


Скачать книгу
the pancreatic gland are practically free from the ferment trypsin. In both cases the cell-protoplasm stores up zymogen and not the active ferment, but at the moment of secretion the zymogen is transformed into ferment and possibly other organic substances characteristic of the fluid secreted. Absorption of the products of digestion tends to increase the activity of the secreting cells, but we have no tangible proof that any particular kinds of food are directly peptogenous, i.e., that they lead to a storing up in the gastric cells, for example, of pepsinogen, although it may be that the so-called peptogenous foods give rise to a more active conversion of pepsinogen into pepsin.23 As already stated, the zymogen is manufactured directly from the cell-protoplasm, and the constructive power is certainly not directly controlled by the character of the food ingested.

      It must be remembered, however, that in spite of oft-repeated attempts to obtain more definite knowledge regarding the composition of these proteolytic enzymes our efforts have been more or less baffled. We are confronted at the outset with the fact that no criterion of chemical purity exists, either in the way of chemical composition or of chemical reactions. The only standard of purity available is the intensity of proteolytic action, but this is so dependent upon attendant circumstances that it is only partially helpful in forming an estimate of chemical purity. My own experiments in this direction, and they have been quite numerous, have convinced me that it is practically impossible to obtain a preparation of either pepsin or trypsin at all active which does not show at least some proteid reactions. Furthermore, such samples of these two enzymes as I have analyzed have shown a composition closely akin to that of proteid bodies. I will not take time to go into all the details of my work in this direction, contenting myself here with the statement that the purest specimens of pepsin and trypsin I have been able to prepare have always shown their relationship to the proteid bodies by responding to many of the typical proteid reactions, and their composition, though somewhat variable, has in the main substantiated this evident relationship.

      The most satisfactory method I have found for obtaining a comparatively pure preparation of pepsin, and one at the same time strongly active, is a modification of the method published some years ago by Kühne and myself.29 The mucous membrane from the cardiac portion of a pig’s stomach is dissected off and washed with water. The upper surface of the mucosa is then scraped with a knife until at least half of the membrane is removed. These scrapings, containing the fragments of the peptic glands, are warmed at 40° C. with an abundance of 0.2 per cent. hydrochloric acid for ten to twelve days in order to transform all of the convertible albuminous matter into peptone. The solution is then freed from insoluble matter by filtration and immediately saturated with ammonium sulphate, by which the pepsin, with some albumose, is precipitated in the form of a more or less gummy, or semi-adherent mass. This is filtered off, washed with a saturated solution of ammonium sulphate and then dissolved in 0.2 per cent. hydrochloric acid. The resultant solution is next dialyzed in running water until the ammonium salt is entirely removed, thymol being added to prevent putrefaction, after which the fluid is mixed with an equal volume of 0.4 per cent. hydrochloric acid and again warmed at 40° C. for several days. The ferment is then once more precipitated by saturation of the fluid with ammonium sulphate, the precipitate strained off, dissolved in 0.2 per cent. acid and again dialyzed in running water until the solution is entirely free from sulphate. The clear solution of the ferment obtained in this manner can then be concentrated at 40° C. in shallow dishes, and if desired the ferment obtained as a scaly residue. So prepared, the pepsin is certainly quite pure, that is comparatively, and although it may contain some albumose, the latter must be very resistant to the action of the ferment; indeed, pepsin is in many respects an albumose-like body itself.

      When dissolved in water and heated above 80° C., these enzymes are decomposed to such an extent that their proteolytic power is totally destroyed. The amount of coagulum produced by heat, however, is comparatively small, though variable with different preparations. Thus with trypsin, Kühne originally considered that boiling an aqueous solution of the ferment would give rise to about twenty per cent. of coagulated proteid and eighty per cent. of peptone-like matter. With the purer preparations now obtainable there is apparently less coagulable matter present, and Loew31 has succeeded in preparing from the pancreas of the ox a sample of trypsin containing 52.75 per cent. of carbon and 16.55 per cent. of nitrogen, and yielding only a small coagulum by heat. Loew considered the ferment to be a true peptone, but in view of our present knowledge regarding the albumoses, I think we are justified in assuming it to be an albumose-like body rather than a true peptone. At the same time it may be well to again emphasize the fact that our only “means of determining the presence of an enzyme is that of ascertaining the change which it is able to bring about in other substances, and since the activity of the enzymes is extra­ordinarily great, a minute trace suffices to produce a marked effect. From this it follows that the purified enzymes which give distinct proteid reactions might merely consist of very small quantities of a true non-proteid enzyme, adherent to or mixed with a residue of inert proteid material.”32 This quotation gives expression to a possibility which we certainly cannot ignore, but my own experiments lead me to believe firmly in the proteid nature of these two enzymes. Further, we find partial substantiation of this view in the results obtained by Wurtz33 in his study of the vegetable proteolytic ferment papain, and in my own results from the study of the proteolytic ferment of pineapple juice.34 Thus, Wurtz prepared from the juice of Carica papaya an active sample of papain, and found it to contain on analysis about 16.7 per cent. of nitrogen and 52.5 per cent. of carbon, while the reactions of the product likewise testified to the proteid nature of the enzyme. Martin, too, has concluded from his study of papain that the ferment is at least associated with an albumose.35


Скачать книгу