On Digestive Proteolysis. R. H. Chittenden
and the temperature, for example, at which they lose their peculiar power, is raised ten degrees or more. I have also found the same to be true of the vegetable proteolytic ferments, and also of the amylolytic ferment of saliva.
The above facts furnish us, I think, a good illustration of how dependent these proteolytic enzymes are upon the proper conditions of temperature, to say nothing of other conditions, for the full exercise of their peculiar power. Toward acids, alkalies, metallic salts, and many other compounds they are even more sensitive than toward heat, and much might be said regarding the effects, inhibitory or otherwise, produced by a large number of common drugs or medicinal agents on these two ferments. Any lengthy discussion of this matter, however, would be foreign to our subject, and I will only call your attention in passing to one or two points which have a special bearing upon the general nature of the enzymes. Take, for example, the influence of such substances as urethan, paraldehyde, and thallin sulphate on the proteolytic action of pepsin-hydrochloric acid37 and we find that small quantities, 0.1 to 0.3 per cent. tend to increase the rate of proteolysis, while larger amounts, say one per cent., decidedly check proteolysis. Similarly, among inorganic compounds, arsenious oxide, arsenic oxide, boracic acid, and potassium bromide38 in small amounts increase the proteolytic power of pepsin in hydrochloric acid solution, while larger quantities check the action of the ferment in proportion to the amounts added. Again, with the enzyme trypsin, similar results with such salts as potassium cyanide, sodium tetraborate, potassium bromide and iodide39 may be quoted as showing not only the sensitiveness of the ferment toward foreign substances, but likewise its peculiar behavior, viz., stimulation in the presence of small amounts and inhibition in the presence of larger quantities.
Furthermore, we have found that even gases, as carbonic acid and hydrogen sulphide, exert a marked retarding influence on the proteid-digesting power of trypsin. Moreover, while it is generally stated that proteolytic and other enzymes are practically indifferent to the presence of chloroform, thymol, and other like substances that quickly interfere with the processes of the so-called organized ferments, pepsin and trypsin certainly do show a certain degree of sensitiveness to chloroform, and indeed even to a current of air passed through their solutions. Thus, very recently, Bertels40 and Dubs41, working under Salkowski’s direction, have called attention to the peculiar behavior of pepsin to chloroform; their results showing, first, that small amounts of this agent tend to increase the proteolytic power of the enzyme, while larger amounts decrease its digestive power. Another interesting point brought out especially by Dub’s experiments is the fact that an impure solution of the ferment, viz., an acid extract, for example, of the mucous membrane of the stomach containing more or less albuminous matter, is far less sensitive to chloroform than an acid solution of the purified ferment, thus showing again the protective influence of proteids and other extraneous matters; the latter guarding the enzyme to a certain extent from both the stimulating and inhibitory action of various agents.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.