Deep Learning illustriert. Jon Krohn

Deep Learning illustriert - Jon Krohn


Скачать книгу
und Machine Learning with Python for Everyone – wendet sich dieses Buch an ein breites Publikum mit ganz unterschiedlichem Wissen und Können. Die mathematischen Notationen sind auf ein Minimum beschränkt, und falls dennoch Gleichungen erforderlich sind, werden sie von verständlichem Text begleitet. Die meisten Erkenntnisse werden durch Grafiken, Illustrationen und Keras-Code ergänzt, der in Form leicht nachzuvollziehender Jupyter-Notebooks zur Verfügung steht.

      Jon Krohn unterrichtet schon seit vielen Jahren Deep Learning. Besonders denkwürdig war eine Präsentation beim Open Statistical Programming Meetup in New York – bei derselben Vereinigung, in der er seine Deep Learning Study Group startete. Seine Brillanz in diesem Thema zeigt sich an seinen Texten, die Lesern Bildung vermitteln und ihnen gleichzeitig zeigen, wie spannend und aufregend das Material ist. Für dieses Buch arbeitet er mit Grant Beyleveld und Aglaé Bassens zusammen, die ihr Wissen bei der Anwendung von Deep-Learning-Algorithmen und ihre gekonnten und witzigen Zeichnungen beisteuern.

      Deep Learning illustriert kombiniert Theorie, Mathematik (dort, wo es nötig ist), Code und Visualisierungen zu einer umfassenden Behandlung des Themas Deep Learning. Das Buch behandelt die volle Breite des Themas, einschließlich vollständig verbundener Netzwerke, Convolutional Neural Networks, Recurrent Neural Networks, Generative Adversarial Networks und Reinforcement Learning sowie deren Anwendungen. Dadurch ist dieses Buch die ideale Wahl für jemanden, der neuronale Netze kennenlernen und gleichzeitig praktische Hinweise für deren Implementierung haben möchte. Jeder kann und sollte davon profitieren und außerdem seine Zeit beim Lesen mit Jon, Grant und Aglaé genießen.

       Jared Lander

      Herausgeber der Reihe

       Einführung

      Milliarden miteinander verbundener Neuronen, gemeinhin als Gehirn bezeichnet, bilden Ihr Nervensystem und erlauben es Ihnen, zu spüren, zu denken und zu handeln. Durch akribisches Einfärben und Untersuchen dünner Scheiben von Gehirnmasse konnte der spanische Arzt Santiago Cajal (Abbildung 1) als erster1 Neuronen identifizieren (Abbildung 2). In der ersten Hälfte des 20. Jahrhunderts begannen Forscher zu verstehen, wie diese Zellen arbeiten. In den 1950er-Jahren experimentierten Wissenschaftler, die von unserem zunehmenden Verständnis für das Gehirn inspiriert waren, mit computerbasierten künstlichen Neuronen und verknüpften diese zu künstlichen neuronalen Netzen, die versuchten, die Funktionsweise ihres natürlichen Namensvetters nachzuahmen.

      Gewappnet mit dieser kurzen Geschichte der Neuronen, können wir den Begriff Deep Learning täuschend leicht definieren: Deep Learning beinhaltet ein Netzwerk, in dem künstliche Neuronen – üblicherweise Tausende, Millionen oder noch mehr davon – wenigstens mehrere Schichten tief gestapelt sind. Die künstlichen Neuronen in der ersten Schicht übergeben Informationen an die zweite, die zweite Schicht reicht sie an die dritte und so weiter, bis die letzte Schicht irgendwelche Werte ausgibt. Wie wir allerdings im Laufe dieses Buches zeigen werden, kann diese simple Definition die bemerkenswerte Breite der Funktionalität des Deep Learning sowie seine außerordentlichen Zwischentöne nicht annähernd erfassen.

      Wie wir in Kapitel 1 genauer ausführen werden, war die erste Welle des Deep-Learning-Tsunami, die metaphorisch gesprochen ans Ufer brandete, eine herausragende Leistung in einem wichtigen Machine-Vision-Wettbewerb im Jahre 2012. Sie wurde getrieben und unterstützt durch das Vorhandensein einigermaßen preiswerter Rechenleistung, ausreichend großer Datensätze und einer Handvoll wesentlicher theoretischer Fortschritte. Akademiker und Techniker merkten auf, und in den turbulenten Jahren seither hat das Deep Learning zahlreiche, mittlerweile alltägliche Anwendungen gefunden. Von Teslas Autopilot bis zur Stimmerkennung von Alexa, von Echtzeitübersetzungen zwischen Sprachen bis hin zu seiner Integration in Hunderte von Google-Produkten hat Deep Learning die Genauigkeit vieler durch Computer erledigter Aufgaben von 95 Prozent auf teils mehr als 99 Prozent verbessert – die entscheidenden Prozentpunkte, die dafür sorgen, dass ein automatisierter Dienst sich tatsächlich anfühlt, als würde er von Zauberhand ausgeführt werden. Auch wenn die in diesem Buch gelieferten interaktiven Codebeispiele die vorgebliche Magie entzaubern, verschafft das Deep Learning den Maschinen eine übermenschliche Fähigkeit bei komplexen Aufgaben, die so verschieden sind wie das Erkennen von Gesichtern, das Zusammenfassen von Texten und das Spielen schwieriger Brettspiele.2 Angesichts dieser markanten Fortschritte überrascht es kaum, dass »Deep Learning« gleichgesetzt wird mit »künstlicher Intelligenz« – in der Presse, am Arbeitsplatz und zu Hause. Es sind aufregende Zeiten, weil – wie Sie in diesem Buch entdecken werden – vermutlich nur einmal im Leben ein einziges Konzept in so kurzer Zeit so umfassende Umstürze mit sich bringt. Wir sind hocherfreut, dass auch Sie Interesse an Deep Learning gefunden haben, und können es kaum erwarten, unseren Enthusiasmus für diese beispiellose Technik mit Ihnen zu teilen.

       Abb. 1 Santiago Cajal (1852–1934)

       Abb. 2 Ein handgezeichnetes Diagramm aus Cajals Veröffentlichung (1894) zeigt das Wachstum eines Neurons (a–e) und verschiedenartige Neuronen eines Frosches (A), einer Eidechse (B), einer Ratte (C) und eines Menschen (D)

       Wie Sie dieses Buch lesen sollten

      Dieses Buch besteht aus vier Teilen. Teil I, »Deep Learning vorgestellt«, eignet sich für alle interessierten Leserinnen und Leser. Es ist ein allgemeiner Überblick, der uns verrät, was Deep Learning eigentlich ist, wie es sich entwickelt hat und wie es mit Konzepten wie KI, Machine Learning und Reinforcement Learning verwandt ist. Voller eigens geschaffener Illustrationen, eingängiger Analogien und auf das Wesentliche konzentrierter Beschreibungen, sollte Teil I für alle erhellend sein, also auch für diejenigen, die keine besondere Programmiererfahrung mitbringen.

      Die Teile II bis IV wenden sich hingegen an Softwareentwickler, Data Scientists, Forscher, Analysten und andere, die gern lernen möchten, wie sich Deep-Learning-Techniken auf ihrem Gebiet einsetzen lassen. In diesen Teilen unseres Buches wird die wesentliche zugrunde liegende Theorie behandelt. Hierbei wird der Einsatz mathematischer Formeln auf das Mindestmaß reduziert und stattdessen auf intuitive visuelle Darstellungen und praktische Beispiele in Python gesetzt. Neben dieser Theorie vermitteln funktionierende Codeausschnitte, die in den begleitenden Jupyter-Notebooks3 zur Verfügung stehen, ein praktisches Verständnis für die wichtigsten Familien der Deep-Learning-Ansätze und -Anwendungen: Maschinelles Sehen (Machine Vision) (Kapitel 10), Verarbeitung natürlicher Sprache (Natural Language Processing) (Kapitel 11), Bildherstellung (Kapitel 12) und Spiele (Kapitel 13). Damit er besser zu erkennen ist, geben wir Code immer in einer solchen Nichtproportionalschrift (also in einer Schrift mit fester Breite) an. Außerdem verwenden wir in den Codeausschnitten den üblichen Jupyter-Stil (Zahlen in Grün, Strings in Rot usw.).

      Falls Sie sich nach detaillierteren Erklärungen der mathematischen und statistischen Grundlagen des Deep Learning sehnen, als wir in diesem Buch


Скачать книгу