Invariants And Pictures: Low-dimensional Topology And Combinatorial Group Theory. Vassily Olegovich Manturov

Invariants And Pictures: Low-dimensional Topology And Combinatorial Group Theory - Vassily Olegovich Manturov


Скачать книгу

       Preface

       Acknowledgments

       Introduction

       1.Groups. Small Cancellations. Greendlinger Theorem

       1.1Group diagrams language

       1.1.1Preliminary examples

       1.1.2The notion of a diagram of a group

       1.1.3The van Kampen lemma

       1.1.4Unoriented diagrams

       1.2Small cancellation theory

       1.2.1Small cancellation conditions

       1.2.2The Greendlinger theorem

       1.3Algorithmic problems and the Dehn algorithm

       1.4The Diamond lemma

       2.Braid Theory

       2.1Definitions of the braid group

       2.2The stable braid group and the pure braid group

       2.3The curve algorithm for braids recognition

       2.3.1Construction of the invariant

       2.3.2Algebraic description of the invariant

       2.4Virtual braids

       2.4.1Definitions of virtual braids

       2.4.2Invariants of virtual braids

       3.Curves on Surfaces. Knots and Virtual Knots

       3.1Basic notions of knot theory

       3.2Curve reduction on surfaces

       3.2.1The disc flow

       3.2.2Minimal curves in an annulus

       3.2.3Proof of Theorems 3.3 and 3.4

       3.2.4Operations on curves on a surface

       3.3Links as braid closures

       3.3.1Classical case

       3.3.2Virtual case

       3.3.3An analogue of Markov’s theorem in the virtual case

       4.Two-dimensional Knots and Links

       4.12-knots and links

       4.2Surface knots

       4.3Other types of 2-dimensional knotted surfaces

       4.4Smoothing on 2-dimensional knots

       4.4.1The notion of smoothing

       4.4.2The smoothing process in terms of the framing change

       4.4.3Generalised F-lemma

       Parity Theory

       5.Parity in Knot Theories. The Parity Bracket

       5.1The Gaußian parity and the parity bracket

       5.1.1The Gaußian parity

       5.1.2Smoothings of knot diagrams

       5.1.3The parity bracket invariant

       5.1.4The bracket invariant with integer coefficients

       5.2The parity axioms

       5.3Parity in terms of category theory

       5.4The L-invariant

       5.5Parities on 2-knots and links

       5.5.1The Gaußian parity

       5.5.2General parity principle

       5.6Parity Projection. Weak Parity

       5.6.1Gaußian parity and parity projection

       5.6.2The notion of weak parity

       5.6.3Functorial mapping for Gaußian parity

       5.6.4The parity hierarchy on virtual knots

       6.Cobordisms

       6.1Cobordism


Скачать книгу