Nitro-Explosives: A Practical Treatise. P. Gerald Sanford

Nitro-Explosives: A Practical Treatise - P. Gerald Sanford


Скачать книгу
to determine the resistance of the earth-connection, and to localise any defective joints or parts in the conductors. The best system of testing the conductors is to balance the resistance of each of the earths against the remainder of the system, from which the state of the earths may be inferred with sufficient accuracy for all practical purposes.

      Captain Bucknill, R.E., has designed an instrument to test resistance which is based on the Post Office pattern resistance coil, and is capable of testing to approximate accuracy up to 200 ohms, and to measure roughly up to 2,000 ohms. Mr. R. Anderson's apparatus is also very handy, consisting of a case containing three Leclanché cells, and a galvanometer with a "tangent" scale and certain standard resistances. Some useful articles on the protection of buildings from lightning will be found in Arms and Explosives, July, August, and September 1892, and by Mr. Anderson, Brit. Assoc., 1878–80.

      ~Nitro-Glycerine.~—One of the most powerful of modern explosive agents is nitro-glycerine. It is the explosive contained in dynamite, and forms the greater part of the various forms of blasting gelatines, such as gelatine dynamite and gelignite, both of which substances consist of a mixture of gun-cotton dissolved in nitro-glycerine, with the addition of varying proportions of wood-pulp and saltpetre, the latter substances acting as absorbing materials for the viscid gelatine. Nitro-glycerine is also largely used in the manufacture of smokeless powders, such as cordite, ballistite, and several others.

      Nitro-glycerol, or glycerol tri-nitrate, was discovered by Sobrero in the year 1847. In a letter written to M. Pelouse, he says, "when glycerol is poured into a mixture of sulphuric acid of a specific gravity of 1.84, and of nitric acid of a gravity of 1.5, which has been cooled by a freezing mixture, that an oily liquid is formed." This liquid is nitro-glycerol, or nitro-glycerine, which for some years found no important use in the arts, until the year 1863, when Alfred Nobel first started a factory in Stockholm for its manufacture upon a large scale; but on account of some serious accidents taking place, its use did not become general.

      It was not until Nobel conceived the idea (in 1866) of absorbing the liquid in some absorbent earth, and thus forming the material that is now known as dynamite, that the use of nitro-glycerine as an explosive became general.

      Among those who improved the manufacture of nitro-glycerine was Mowbray, who, by using pure glycerine and nitric acid free from nitrous acid, made very great advances in the manufacture. Mowbray was probably the first to use compressed air for the purpose of keeping the liquids well agitated during the process of nitration, which he conducted in earthenware pots, each containing a charge of 17 lbs. of the mixed acids and 2 lbs. of glycerol.

      A few years later (1872), MM. Boutnny and Faucher, of Vonges,[A] proposed to prepare nitro-glycerine by mixing the sulphuric acid with the glycerine, thus forming a sulpho-glyceric acid, which was afterwards mixed with a mixture of nitric and sulphuric acids. They claimed for this method of procedure that the final temperature is much lower. The two mixtures are mixed in the proportions—Glycerine, 100; nitric acid, 280; and sulphuric acid, 600. They state that the rise of temperature upon mixing is limited from 10° to 15° C.; but this method requires a period of twenty-four hours to complete the nitration, which, considering the danger of keeping the nitro-glycerine in contact with the mixed acids for so long, probably more than compensates for the somewhat doubtful advantage of being able to perform the nitration at such a low temperature. The Boutnny process was in operation for some time at Pembrey Burrows in Wales, but after a serious explosion the process was abandoned.

      [Footnote A: Comptes Rendus, 75; and Desortiaux, "Traité sur la Poudre," 684–686.]

      Nitro-glycerine is now generally made by adding the glycerine to a mixture of sulphuric and nitric acids. The sulphuric acid, however, takes no part in the reaction, but is absolutely necessary to combine with the water that is formed by the decomposition, and thus to keep up the strength of the nitric acid, otherwise lower nitrates of glycerine would be formed that are soluble in water, and which would be lost in the subsequent process of washing to which the nitro-compound is subjected, in order to remove the excess of acids, the retention of which in the nitro-glycerol is very dangerous. Nitro-glycerol, which was formerly considered to be a nitro-substitution compound of glycerol, was thought to be formed thus—

      C_{3}H_{8}O_{3} + 3HNO_{3} = C{3}H_{5}(NO_{2}){3}O{3} + 3H_{2}O;

      but more recent researches rather point to its being regarded as a nitric ether of glycerol, or glycerine, and to its being formed thus—

      C_{3}H_{8}O_{3} + 3 HNO_{3} = C{3}H_{5}(NO_{3}){3} + 3H{2}O. 92 227

      |OH

       The formula of glycerine is C_{3}H_{8}O_{8}, or C_{3}H_{5}|OH

       |OH

      |ONO_{2}

       and that of the mono-nitrate of glycerine, C_{3}H_{5}|OH

       |OH

      |ONO_{2}

       and of the tri-nitrate or (nitro-glycerine), C_{3}H_{5}|ONO_{2}

       |ONO_{2}

      that is, the three hydrogens of the semi-molecules of hydroxyl in the glycerine have been replaced by the NO_{2} group.

      In the manufacture upon the large scale, a mixture of three parts by weight of nitric acid and five parts of sulphuric acid are used. From the above equation it will be seen that every 1 lb. of glycerol should give 2.47 lbs. of nitro-glycerol ((227+1)/92 = 2.47), but in practice the yield is only about 2 lbs. to 2.22, the loss being accounted for by the unavoidable formation of some of the lower nitrate, which dissolves in water, and is thus washed away, and partly perhaps to the presence of a little water (or other non-nitrable matter) in the glycerine, but chiefly to the former, which is due to the acids having become too weak.

       Table of Contents

       MANUFACTURE OF NITRO-GLYCERINE.

      Properties of Nitro-Glycerine—Manufacture of Nitro-Glycerine—Nitration—

       The Nathan Nitrator—Separation—Filtering and Washing—The Waste Acids—

       Treatment of the Waste Acid from the Manufacture of Nitro-Glycerine and

       Gun-Cotton.

      ~Properties of Nitro-Glycerine.~—Nitro-glycerol is a heavy oily liquid of specific gravity 1.6 at 15° C., and when quite pure is colourless. The commercial product is a pale straw yellow, but varies much according to the purity of the materials used in its manufacture. It is insoluble in water, crystallises at 10.5° C., but different commercial samples behave very differently in this respect, and minute impurities prevent or delay crystallisation. Solid nitro-glycerol[A] melts at about 12° C., but requires to be exposed to this temperature for some time before melting. The specific gravity of the solid form is 1.735 at +10° C.; it contracts one-twelfth of its volume in solidifying. Beckerheim[B] gives the specific heat as 0.4248 between the temperatures of 9.5° and 9.8° C., and L. de Bruyn gives the boiling point as above 200°.

      [Footnote A: Di-nitro-mono chlorhydrin, when added to nitro-glycerine up to 20 per cent., is said to prevent its freezing.]

      [Footnote B: Isb., Chem. Tech., 22, 481–487. 1876.]

      Nitro-glycerine has a sweet taste, and causes great depression and vertigo. It is soluble in ether, chloroform, benzene, glacial acetic acid, and nitro-benzene, in 1.75 part of methylated spirit, very nearly insoluble in water, and practically insoluble in carbon bisulphide. Its formula is C_{3}H_{5}(NO_{3})_{3}, and molecular weight 227. When pure, it may be kept any length of time without decomposition. Berthelot kept a sample for ten years, and Mr. G. M'Roberts, of the Ardeer Factory, for nine years, without their showing signs of decomposition; but if it should contain the smallest trace of free acid, decomposition is certain to be started before long. This will generally show itself by the formation of little green spots in the gelatine compounds, or a green ring upon the


Скачать книгу