The Elements of Geology. William Harmon Norton

The Elements of Geology - William Harmon Norton


Скачать книгу
slowly where it decays slowly, either because of the climate or the resistance of the rock. It may be rapidly removed by a stream flowing along its base.

      

      Fig. 8. Talus at Foot of Granite Cliffs, Sierra Nevada Mountains

       In a moist climate a soluble rock, such as massive limestone, may form talus little if any faster than the talus weathers away. A loose-textured sandstone breaks down into incoherent sand grains, which in dry climates, where unprotected by vegetation, may be blown away as fast as they fall, leaving the cliff bare to the base. Cliffs of such slow-decaying rocks as quartzite and granite when closely jointed accumulate talus in large amounts.

      Fig. 9. Diagram Illustrating Retreat of Cliff, c, and Talus, t

      Talus slopes may be so steep as to reach the angle of repose, i.e. the steepest angle at which the material will lie. This angle varies with different materials, being greater with coarse and angular fragments than with fine rounded grains. Sooner or later a talus reaches that equilibrium where the amount removed from its surface just equals that supplied from the cliff above. As the talus is removed and weathers away its slope retreats together with the retreat of the cliff, as seen in Figure 9.

      Graded slopes. Where rocks weather faster than their waste is carried away, the waste comes at last to cover all rocky ledges. On the steeper slopes it is coarser and in more rapid movement than on slopes more gentle, but mountain sides and hills and plains alike come to be mantled with sheets of waste which everywhere is creeping toward the streams. Such unbroken slopes, worn or built to the least inclination at which the waste supplied by weathering can be urged onward, are known as graded slopes.

       Of far less importance than the silent, gradual creep of waste, which is going on at all times everywhere about us, are the startling local and spasmodic movements which we are now to describe.

      Avalanches. On steep mountain sides the accumulated snows of winter often slip and slide in avalanches to the valleys below. These rushing torrents of snow sweep their tracks clean of waste and are one of Nature’s normal methods of moving it along the downhill path.

      Fig. 10. A Landslide, Quebec

      Landslides. Another common and abrupt method of delivering waste to streams is by slips of the waste mantle in large masses. After long rains and after winter frosts the cohesion between the waste and the sound rock beneath is loosened by seeping water underground. The waste slips on the rock surface thus lubricated and plunges down the mountain side in a swift roaring torrent of mud and stones.

      Fig. 11. Diagram Illustrating Conditions favorable to a Landslide

       lm, limestone dipping toward valley of river, r; sh, shale

      We may conveniently mention here a second type of landslide, where masses of solid rock as well as the mantle of waste are involved in the sudden movement. Such slips occur when valleys have been rapidly deepened by streams or glaciers and their sides have not yet been graded. A favorable condition is where the strata dip (i.e. incline downwards) towards the valley (Fig. 11), or are broken by joint planes dipping in the same direction. The upper layers, including perhaps the entire mountain side, have been cut across by the valley trench and are left supported only on the inclined surface of the underlying rocks. Water may percolate underground along this surface and loosen the cohesion between the upper and the underlying strata by converting the upper surface of a shale to soft wet clay, by dissolving layers of a limestone, or by removing the cement of a sandstone and converting it into loose sand. When the inclined surface is thus lubricated the overlying masses may be launched into the valley below. The solid rocks are broken and crushed in sliding and converted into waste consisting, like that of talus, of angular unsorted fragments, blocks of all sizes being mingled pell-mell with rock meal and dust. The principal effects of landslides may be gathered from the following examples.

      At Gohna, India, in 1893, the face of a spur four thousand feet high, of the lower ranges of the Himalayas, slipped into the gorge of the headwaters of the Ganges River in successive rock falls which lasted for three days. Blocks of stone were projected for a mile, and clouds of limestone dust were spread over the surrounding country. The débris formed a dam one thousand feet high, extending for two miles along the valley. A lake gathered behind this barrier, gradually rising until it overtopped it in a little less than a year. The upper portion of the dam then broke, and a terrific rush of water swept down the valley in a wave which, twenty miles away, rose one hundred and sixty feet in height. A narrow lake is still held by the strong base of the dam.

      In 1896, after forty days of incessant rain, a cliff of sandstone slipped into the Yangtse River in China, reducing the width of the channel to eighty yards and causing formidable rapids.

      Fig. 12. Bowlders of Weathering, Granite Quarry, Cape Ann, Massachusetts

      At Flims, in Switzerland, a prehistoric landslip flung a dam eighteen hundred feet high across the headwaters of the Rhine. If spread evenly over a surface of twenty-eight square miles, the material would cover it to a depth of six hundred and sixty feet. The barrier is not yet entirely cut away, and several lakes are held in shallow basins on its hummocky surface.

      A slide from the precipitous river front of the citadel hill of Quebec, in 1889, dashed across Champlain Street, wrecking a number of houses and causing the death of forty-five persons. The strata here are composed of steeply dipping slate.

      In lofty mountain ranges there may not be a single valley without its traces of landslides, so common there is this method of the movement of waste, and of building to grade over-steepened slopes.

      Rock Sculpture By Weathering

      We are now to consider a few of the forms into which rock masses are carved by the weather.

      Fig. 13. Differential Weathering on a Monument, Colorado

      Bowlders of weathering. In many quarries and outcrops we may see that the blocks into which one or more of the uppermost layers have been broken along their joints and bedding planes are no longer angular, as are those of the layers below. The edges and corners of these blocks have been worn away by the weather. Such rounded cores, known as bowlders of weathering, are often left to strew the surface.

      Differential weathering. This term covers all cases in which a rock mass weathers differently in different portions. Any weaker spots or layers are etched out on the surface, leaving the more resistant in relief. Thus massive limestones become pitted where the weather drills out the weaker portions. In these pits, when once they are formed, moisture gathers, a little soil collects, vegetation takes root, and thus they are further enlarged until the limestone may be deeply honeycombed.

      Fig. 14. Honeycombed Limestone, Iowa

      Fig. 15. Cliffs and Slopes on North Wall of the Grand Canyon of the Colorado River, Arizona

      

      On the sides of canyons, and


Скачать книгу