The Elements of Geology. William Harmon Norton

The Elements of Geology - William Harmon Norton


Скачать книгу
which we have studied would be brought to an end. The very presence of the mantle of waste over the land proves that on the whole rocks weather more rapidly than their waste is removed. The destruction of the land is going on as fast as the waste can be carried away.

      We have now learned to see in the mantle of waste the record of the destructive action of the agencies of weathering on the rocks of the land surface. Similar records we shall find buried deeply among the rocks of the crust in old soils and in rocks pitted and decayed, telling of old land surfaces long wasted by the weather. Ever since the dry land appeared these agencies have been as now quietly and unceasingly at work upon it, and have ever been the chief means of the destruction of its rocks. The vast bulk of the stratified rocks of the earth’s crust is made up almost wholly of the waste thus worn from ancient lands.

      Fig. 23. Mount Sneffels, Colorado

       Describe and account for what you see in this view. What changes may the mountain be expected to undergo in the future from the agencies now at work upon it?

      In studying the various geological agencies we must remember the almost inconceivable times in which they work. The slowest process when multiplied by the immense time in which it is carried on produces great results. The geologist looks upon the land forms of the earth’s surface as monuments which record the slow action of weathering and other agents during the ages of the past. The mountain peak, the rounded hill, the wide plain which lies where hills and mountains once stood, tell clearly of the great results which slow processes will reach when given long time in which to do their work. We should accustom ourselves also to think of the results which weathering will sooner or later bring to pass. The tombstone and the bowlder of the field, which each year lose from their surfaces a few crystalline grains, must in time be wholly destroyed. The hill whose rocks are slowly rotting underneath a cover of waste must become lower and lower as the centuries and millenniums come and go, and will finally disappear. Even the mountains are crumbling away continually, and therefore are but fleeting features of the landscape.

      

      CHAPTER II

      THE WORK OF GROUND WATER

      Land waters. We have seen how large is the part that water plays at and near the surface of the land in the processes of weathering and in the slow movement of waste down all slopes to the stream ways. We now take up the work of water as it descends beneath the ground—a corrosive agent still, and carrying in solution as its load the invisible waste of rocks derived from their soluble parts.

      Land waters have their immediate source in the rainfall. By the heat of the sun water is evaporated from the reservoir of the ocean and from moist surfaces everywhere. Mingled as vapor with the air, it is carried by the winds over sea and land, and condensed it returns to the earth as rain or snow. That part of the rainfall which descends on the ocean does not concern us, but that which falls on the land accomplishes, as it returns to the sea, the most important work of all surface geological agencies.

      The rainfall may be divided into three parts: the first dries up, being discharged into the air by evaporation either directly from the soil or through vegetation; the second runs off over the surface to flood the streams; the third soaks in the ground and is henceforth known as ground or underground water.

      The descent of ground water. Seeping through the mantle of waste, ground water soaks into the pores and crevices of the underlying rock. All rocks of the upper crust of the earth are more or less porous, and all drink in water. Impervious rocks, such as granite, clay, and shale, have pores so minute that the water which they take in is held fast within them by capillary attraction, and none drains through. Pervious rocks, on the other hand, such as many sandstones, have pore spaces so large that water filters through them more or less freely. Besides its seepage through the pores of pervious rocks, water passes to lower levels through the joints and cracks by which all rocks, near the surface are broken.

      Even the closest-grained granite has a pore space of 1 in 400, while sandstone may have a pore space of 1 in 4. Sand is so porous that it may absorb a third of its volume of water, and a loose loam even as much as one half.

      Fig. 24. Diagram Illustrating the Relation of the Ground-Water Surface to the Surface of the Ground

       The dotted line represents the ground-water surface, and the arrows indicate the direction of the movements of ground-water. m, marsh; w, well; r, river

      The ground-water surface is the name given the upper surface of ground water, the level below which all rocks are saturated. In dry seasons the ground-water surface sinks. For ground water is constantly seeping downward under gravity, it is evaporated in the waste and its moisture is carried upward by capillarity and the roots of plants to the surface to be evaporated in the air. In wet seasons these constant losses are more than made good by fresh supplies from that part of the rainfall which soaks into the ground, and the ground-water surface rises.

      In moist climates the ground-water surface (Fig. 24) lies, as a rule, within a few feet of the land surface and conforms to it in a general way, although with slopes of less inclination than those of the hills and valleys. In dry climates permanent ground water may be found only at depths of hundreds of feet. Ground water is held at its height by the fact that its circulation is constantly impeded by capillarity and friction. If it were as free to drain away as are surface streams, it would sink soon after a rain to the level of the deepest valleys of the region.

      Fig. 25. A Spring, Kansas

       Is the rock over which the spring discharges pervious or impervious?

      Wells and springs. Excavations made in permeable rocks below the ground-water surface fill to its level and are known as wells. Where valleys cut this surface permanent streams are formed, the water either oozing forth along ill-defined areas or issuing at definite points called springs, where it is concentrated by the structure of the rocks. A level tract where the ground-water surface coincides with the surface of the ground is a swamp or marsh.

      By studying a spring one may learn much of the ways and work of ground water. Spring water differs from that of the stream into which it flows in several respects. If we test the spring with a thermometer during successive months, we shall find that its temperature remains much the same the year round. In summer it is markedly cooler than the stream; in winter it is warmer and remains unfrozen while the latter perhaps is locked in ice. This means that its underground path must lie at such a distance from the surface that it is little affected by summer’s heat and winter’s cold.

      While the stream is often turbid with surface waste washed into it by rains, the spring remains clear; its water has been filtered during its slow movement through many small underground passages and the pores of rocks. Commonly the spring differs from the stream in that it carries a far larger load of dissolved rock. Chemical analysis proves that streams contain various minerals in solution, but these are usually in quantities so small that they are not perceptible to the taste or feel. But the water of springs is often well charged with soluble minerals; in its slow, long journey underground it has searched out the soluble parts of the rocks through which it seeps and has dissolved as much of them as it could. When spring water is boiled away, the invisible load which it has carried is left behind, and in composition is found to be practically identical with that of the soluble ingredients of the country rock. Although to some extent the soluble waste of rocks is washed down surface slopes by the rain, by far the larger part is carried downward by ground water and is delivered to streams by springs.

      In limestone regions springs are charged with calcium carbonate (the carbonate of lime), and where the limestone is magnesian they contain magnesium carbonate also. Such waters are “hard”; when used in washing, the minerals which they contain combine


Скачать книгу