The Elements of Geology. William Harmon Norton

The Elements of Geology - William Harmon Norton


Скачать книгу
minerals in solution, on exposure to the air it is commonly compelled to lay down much of its invisible load in chemical deposits about the spring. These are thrown down from solution either because of cooling, evaporation, the loss of carbon dioxide, or the work of algae.

      Many springs have been charged under pressure with carbon dioxide from subterranean sources and are able therefore to take up large quantities of lime carbonate from the limestone rocks through which they pass. On reaching the surface the pressure is relieved, the gas escapes, and the lime carbonate is thrown down in deposits called travertine. The gas is sometimes withdrawn and the deposit produced in large part by the action of algae and other humble forms of plant life.

      At the Mammoth Hot Springs in the valley of the Gardiner River, Yellowstone National Park, beautiful terraces and basins of travertine are now building, chiefly by means of algae which cover the bottoms, rims, and sides of the basins and deposit lime carbonate upon them in successive sheets. The rock, snow-white where dry, is coated with red and orange gelatinous mats where the algae thrive in the over-flowing waters.

      Similar terraces of travertine are found to a height of fourteen hundred feet up the valley side. We may infer that the springs which formed these ancient deposits discharged near what was then the bottom of the valley, and that as the valley has been deepened by the river the ground water of the region has found lower and lower points of issue.

      In many parts of the country calcareous springs occur which coat with lime carbonate mosses, twigs, and other objects over which their waters flow. Such are popularly known as petrifying springs, although they merely incrust the objects and do not convert them into stone.

      Silica is soluble in alkaline waters, especially when these are hot. Hot springs rising through alkaline siliceous rocks, such as lavas, often deposit silica in a white spongy formation known as siliceous sinter, both by evaporation and by the action of algae which secrete silica from the waters. It is in this way that the cones and mounds of the geysers in the Yellowstone National Park and in Iceland have been formed (Fig. 234).

      Where water oozes from the earth one may sometimes see a rusty deposit on the ground, and perhaps an iridescent scum upon the water. The scum is often mistaken for oil, but at a touch it cracks and breaks, as oil would not do. It is a film of hydrated iron oxide, or limonite, and the spring is an iron, or chalybeate, spring. Compounds of iron have been taken into solution by ground water from soil and rocks, and are now changed to the insoluble oxide on exposure to the oxygen of the air.

      In wet ground iron compounds leached by ground water from the soil often collect in reddish deposits a few feet below the surface, where their downward progress is arrested by some impervious clay. At the bottom of bogs and shallow lakes iron ores sometimes accumulate to a depth of several feet.

      Decaying organic matter plays a large part in these changes. In its presence the insoluble iron oxides which give color to most red and yellow rocks are decomposed, leaving the rocks of a gray or bluish color, and the soluble iron compounds which result are readily leached out—effects seen where red or yellow clays have been bleached about some decaying tree root.

      The iron thus dissolved is laid down as limonite when oxidized, as about a chalybeate spring; but out of contact with the air and in the presence of carbon dioxide supplied by decaying vegetation, as in a peat bog, it may be deposited as iron carbonate, or siderite.

      Total amount of underground waters. In order to realize the vast work in solution and cementation which underground waters are now doing and have done in all geological ages, we must gain some conception of their amount. At a certain depth, estimated at about six miles, the weight of the crust becomes greater than the rocks can bear, and all cavities and pores in them must be completely closed by the enormous pressure which they sustain. Below a depth, therefore, water cannot go. Above it all rocks are water-soaked, up to the limit of their capacity, to within a few feet of the surface. Estimating the average pore space of the rocks above a depth of six miles at from two and a half per cent to five per cent of their volume, it is found that the total amount of ground water may be great enough to cover the entire surface of the earth to a depth of from eight hundred to sixteen hundred feet.

      

      CHAPTER III

      RIVERS AND VALLEYS

      The run-off. We have traced the history of that portion of the rainfall which soaks into the ground; let us now return to that part which washes along the surface and is known as the run-off. Fed by rains and melting snows, the run-off gathers into courses, perhaps but faintly marked at first, which join more definite and deeply cut channels, as twigs their stems. In a humid climate the larger ravines through which the run-off flows soon descend below the ground-water surface. Here springs discharge along the sides of the little valleys and permanent streams begin. The water supplied by the run-off here joins that part of the rainfall which had soaked into the soil, and both now proceed together by way of the stream to the sea.

      River floods. Streams vary greatly in volume during the year. At stages of flood they fill their immediate banks, or overrun them and inundate any low lands adjacent to the channel; at stages of low water they diminish to but a fraction of their volume when at flood.

      At times of flood, rivers are fed chiefly by the run-off; at times of low water, largely or even wholly by springs.

      How, then, will the water of streams differ at these times in turbidity and in the relative amount of solids carried in solution?

      In parts of England streams have been known to continue flowing after eighteen months of local drought, so great is the volume of water which in humid climates is stored in the rocks above the drainage level, and so slowly is it given off in springs.

      

      In Illinois and the states adjacent, rivers remain low in winter and a “spring freshet” follows the melting of the winter’s snows. A “June rise” is produced by the heavy rains of early summer. Low water follows in July and August, and streams are again swollen to a moderate degree under the rains of autumn.

      The discharge of streams. The per cent of rainfall discharged by rivers varies with the amount of rainfall, the slope of the drainage area, the texture of the rocks, and other factors. With an annual rainfall of fifty inches in an open country, about fifty per cent is discharged; while with a rainfall of twenty inches only fifteen per cent is discharged, part of the remainder being evaporated and part passing underground beyond the drainage area. Thus the Ohio discharges thirty per cent of the rainfall of its basin, while the Missouri carries away but fifteen per cent. A number of the streams of the semi-arid lands of the West do not discharge more than five per cent of the rainfall.

      Other things being equal, which will afford the larger proportion of run-off, a region underlain with granite rock or with coarse sandstone? grass land or forest? steep slopes or level land? a well-drained region or one abounding in marshes and ponds? frozen or unfrozen ground? Will there be a larger proportion of run-off after long rains or after a season of drought? after long and gentle rains, or after the same amount of precipitation in a violent rain? during the months of growing vegetation, from June to August, or during the autumn months?

      Fig. 36. Rise of Ground-Water Surface (broken line) beneath Valley (V) in Arid Region

      Desert streams. In arid regions the ground-water surface lies so low that for the most part stream ways do not intersect it. Streams therefore are not fed by springs, but instead lose volume as their waters soak into the thirsty rocks over which they flow. They contribute to the ground water of the region instead of being increased by it. Being supplied chiefly by the run-off, they wither at times of drought to a mere trickle of water, to a chain of pools, or go wholly dry, while at long intervals rains fill their dusty beds with sudden raging torrents. Desert rivers therefore periodically shorten and lengthen their courses, withering back at times of drought for scores of miles, or even for a hundred miles from the point reached by their waters during seasons of rain.

      The geological


Скачать книгу