How It Flies; or, The Conquest of the Air. Richard Ferris

How It Flies; or, The Conquest of the Air - Richard Ferris


Скачать книгу
grains—about 0.0807 lb. At a height above the level of the sea, a cubic foot of air will weigh less than the figure quoted, for its density decreases as we go upward, the pressure being less owing to the diminished attraction of the earth at the greater distance. For instance, at the height of a mile above sea-level a cubic foot of air will weigh about 433 grains, or 0.0619 lb. At the height of five miles it will weigh about 216 grains, or 0.0309 lb. At thirty-eight miles it will have no weight at all, its density being so rare as just to balance the earth’s attraction. It has been calculated that the whole body of air above the earth, if it were all of the uniform density of that at sea-level, would extend only to the height of 26,166 feet. Perhaps a clearer comprehension of the weight and pressure of the ocean of air upon the earth may be gained by recalling that the pressure of the 38 miles of atmosphere is just equal to balancing a column of water 33 feet high. The pressure of the air, therefore, is equivalent to the pressure of a flood of water 33 feet deep.

      Comparative Elevations of Earth and Air.

      But air is seldom dry. It is almost always mingled with the vapor of water, and this vapor weighs only 352 grains per cubic foot at sea-level. Consequently the mixture—damp air—is lighter than dry air, in proportion to the moisture it contains.

      Apparatus to show effects of heat on air currents. a, alcohol lamp; b, ice. The arrows show direction of currents.

      Another fact very important to the aeronaut is that the air is in constant motion. Owing to its ready expansion by heat, a body of air occupying one cubic foot when at a temperature of 32° F. will occupy more space at a higher temperature, and less space at a lower temperature. Hence, heated air will flow upward until it reaches a point where the natural density of the atmosphere is the same as its expanded density due to the heating. Here another complication comes into play, for ascending air is cooled at the rate of one degree for every 183 feet it rises; and as it cools it grows denser, and the speed of its ascension is thus gradually checked. After passing an altitude of 1,000 feet the decrease in temperature is one degree for each 320 feet of ascent. In general, it may be stated that air is expanded one-tenth of its volume for each 50° F. that its temperature is raised.

      This highly unstable condition under ordinary changes of temperature causes continual movements in the air, as different portions of it are constantly seeking that position in the atmosphere where their density at that moment balances the earth’s attraction.

      Sir Hiram Maxim relates an incident which aptly illustrates the effect of change of temperature upon the air. He says: “On one occasion, many years ago, I was present when a bonded warehouse in New York containing 10,000 barrels of alcohol was burned. … I walked completely around the fire, and found things just as I expected. The wind was blowing a perfect hurricane through every street in the direction of the fire, although it was a dead calm everywhere else; the flames mounted straight in the air to an enormous height, and took with them a large amount of burning wood. When I was fully 500 feet from the fire, a piece of partly burned one-inch board, about 8 inches wide and 4 feet long, fell through the air and landed near me. This board had evidently been taken up to a great height by the tremendous uprush of air caused by the burning alcohol.”

      That which happened on a small scale, with a violent change of temperature, in the case of the alcohol fire, is taking place on a larger scale, with milder changes in temperature, all over the world. The heating by the sun in one locality causes an expansion of air at that place, and cooler, denser air rushes in to fill the partial vacuum. In this way winds are produced.

      So the air in which we are to fly is in a state of constant motion, which may be likened to the rush and swirl of water in the rapids of a mountain torrent. The tremendous difference is that the perils of the water are in plain sight of the navigator, and may be guarded against, while those of the air are wholly invisible, and must be met as they occur, without a moment’s warning.

      The solid arrows show the directions of a cyclonic wind on the earth’s surface. At the centre the currents go directly upward. In the upper air above the cyclone the currents have the directions of the dotted arrows.

      Next in importance, to the aerial navigator, is the air’s resistance. This is due in part to its density at the elevation at which he is flying, and in part to the direction and intensity of its motion, or the wind. While this resistance is far less than that of water to the passage of a ship, it is of serious moment to the aeronaut, who must force his fragile machine through it at great speed, and be on the alert every instant to combat the possibility of a fall as he passes into a rarer and less buoyant stratum.

      Diagram showing disturbance of wind currents by inequalities of the ground, and the smoother currents of the upper air. Note the increase of density at A and B, caused by compression against the upper strata.

      Three properties of the air enter into the sum total of its resistance—inertia, elasticity, and viscosity. Inertia is its tendency to remain in the condition in which it may be: at rest, if it is still; in motion, if it is moving. Some force must be applied to disturb this inertia, and in consequence when the inertia is overcome a certain amount of force is used up in the operation. Elasticity is that property by virtue of which air tends to reoccupy its normal amount of space after disturbance. An illustration of this tendency is the springing back of the handle of a bicycle pump if the valve at the bottom is not open, and the air in the pump is simply compressed, not forced into the tire. Viscosity may be described as “stickiness”—the tendency of the particles of air to cling together, to resist separation. To illustrate: molasses, particularly in cold weather, has greater viscosity than water; varnish has greater viscosity than turpentine. Air exhibits some viscosity, though vastly less than that of cold molasses. However, though relatively slight, this viscosity has a part in the resistance which opposes the rapid flight of the airship and aeroplane; and the higher the speed, the greater the retarding effect of viscosity.

      The inertia of the air, while in some degree it blocks the progress of his machine, is a benefit to the aeronaut, for it is inertia which gives the blades of his propeller “hold” upon the air. The elasticity of the air, compressed under the curved surfaces of the aeroplane, is believed to be helpful in maintaining the lift. The effect of viscosity may be greatly reduced by using surfaces finished with polished varnish—just as greasing a knife will permit it to be passed with less friction through thick molasses.

      In the case of winds, the inertia of the moving mass becomes what is commonly termed “wind pressure” against any object not moving with it at an equal speed. The following table gives the measurements of wind pressure, as recorded at the station on the Eiffel Tower, for differing velocities of wind:

Velocity in Miles per Hour Velocity in Feet per Second Pressure in Pounds on a Square Foot
2 2.9 0.012
4 5.9 0.048
6 8.8 0.108
8 11.7 0.192
10 14.7 0.300
15 22.0 0.675
20
Скачать книгу
Librs.Net