Heterogeneous Catalysts. Группа авторов

Heterogeneous Catalysts - Группа авторов


Скачать книгу
on the oxygen reduction rate of size‐selected platinum clusters. Nat. Mater. 12 (10): 919–924.

      18 18 Kwon, G., Ferguson, G.A., Heard, C.J. et al. (2013). Size‐dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. ACS Nano 7 (7): 5808–5817.

      19 19 Liu, C., Yang, B., Tyo, E. et al. (2015). Carbon dioxide conversion to methanol over size‐selected Cu4 clusters at low pressures. J. Am. Chem. Soc. 137 (27): 8676–8679.

      20 20 Negreiros, F.R., Halder, A., Yin, C. et al. (2018). Bimetallic Ag–Pt sub‐nanometer supported clusters as highly efficient and robust oxidation catalysts. Angew. Chem. Int. Ed. 57 (5): 1209–1213.

      21 21 Cotton, F.A. (1966). Transition‐metal compounds containing clusters of metal atoms. Q. Rev. Chem. Soc. 20 (3): 389–401.

      22 22 Cotton, F.A. (1964). Metal atom clusters in oxide systems. Inorg. Chem. 3 (9): 1217–1220.

      23 23 Cotton, F.A. (1981). Metal–metal multiple bonds and metal clusters. In: Reactivity of Metal–Metal Bonds, vol. 155 (ed. M.H. Chisholm), 1–16. American Chemical Society.

      24 24 Dyson, P. and McIndoe, S. (2000). Transition Metal Carbonyl Cluster Chemistry, vol. 2. CRC Press.

      25 25 Dyson, P.J. (2004). Catalysis by low oxidation state transition metal (carbonyl) clusters. Coord. Chem. Rev. 248 (21): 2443–2458.

      26 26 Ciabatti, I., Femoni, C., Iapalucci, M.C. et al. (2014). Platinum carbonyl clusters chemistry: four decades of challenging nanoscience. J. Cluster Sci. 25 (1): 115–146.

      27 27 McKenzie, L.C., Zaikova, T.O., and Hutchison, J.E. (2014). Structurally similar triphenylphosphine‐stabilized undecagolds, Au11(PPh3)7Cl3 and [Au11(PPh3)8Cl2]Cl, exhibit distinct ligand exchange pathways with glutathione. J. Am. Chem. Soc. 136 (38): 13426–13435.

      28 28 Sharma, S., Chakrahari, K.K., Saillard, J.‐Y., and Liu, C.W. (2018). Structurally precise dichalcogenolate‐protected copper and silver superatomic nanoclusters and their alloys. Acc. Chem. Res. 51 (10): 2475–2483.

      29 29 Yao, Q., Chen, T., Yuan, X., and Xie, J. (2018). Toward total synthesis of thiolate‐protected metal nanoclusters. Acc. Chem. Res. 51 (6): 1338–1348.

      30 30 Lei, Z., Wan, X.‐K., Yuan, S.‐F. et al. (2018). Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 51 (10): 2465–2474.

      31 31 Weßing, J., Ganesamoorthy, C., Kahlal, S. et al. (2018). The Mackay‐type cluster [Cu43Al12](Cp*)12: open‐shell 67‐electron superatom with emerging metal‐like electronic structure. Angew. Chem. Int. Ed. 57 (44): 14630–14634.

      32 32 Braga, D., Dyson, P.J., Grepioni, F., and Johnson, B.F.G. (1994). Arene clusters. Chem. Rev. 94 (6): 1585–1620.

      33 33 Huttner, G. and Knoll, K. (1987). RP‐bridged metal carbonyl clusters: synthesis, properties, and reactions. Angew. Chem. Int. Ed. Engl. 26 (8): 743–760.

      34 34 Weinert, B., Mitzinger, S., and Dehnen, S. (2018). (Multi‐)metallic cluster growth. Chem. Eur. J. 24 (34): 8470–8490.

      35 35 Edelmann, F.T. (2016). Lanthanides and actinides: annual survey of their organometallic chemistry covering the year 2015. Coord. Chem. Rev. 318: 29–130.

      36 36 Hungria, A.B., Raja, R., Adams, R.D. et al. (2006). Single‐step conversion of dimethyl terephthalate into cyclohexanedimethanol with Ru5PtSn, a trimetallic nanoparticle catalyst. Angew. Chem. Int. Ed. 45 (29): 4782–4785.

      37 37 Wu, Z., Lanni, E., Chen, W. et al. (2009). High yield, large scale synthesis of thiolate‐protected Ag7 clusters. J. Am. Chem. Soc. 131 (46): 16672–16674.

      38 38 Yang, H., Wang, Y., Huang, H. et al. (2013). All‐thiol‐stabilized Ag44 and Au12Ag32 nanoparticles with single‐crystal structures. Nat. Commun. 4: 2422.

      39 39 Anderson, D.P., Alvino, J.F., Gentleman, A. et al. (2013). Chemically‐synthesised, atomically‐precise gold clusters deposited and activated on titania. Phys. Chem. Chem. Phys. 15 (11): 3917–3929.

      40 40 Niihori, Y., Shima, D., Yoshida, K. et al. (2018). High‐performance liquid chromatography mass spectrometry of gold and alloy clusters protected by hydrophilic thiolates. Nanoscale 10 (4): 1641–1649.

      41 41 Lewis, L.N. (1993). Chemical catalysis by colloids and clusters. Chem. Rev. 93 (8): 2693–2730.

      42 42 Jadzinsky, P.D., Calero, G., Ackerson, C.J. et al. (2007). Structure of a thiol monolayer‐protected gold nanoparticle at 1.1 Å resolution. Science 318 (5849): 430–433.

      43 43 Aiken, J.D. and Finke, R.G. (1999). A review of modern transition‐metal nanoclusters: their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A: Chem. 145 (1): 1–44.

      44 44 Schmid, G., Pfeil, R., Boese, R. et al. (1981). Au55{P(C6H5)3}12Cl6 – a gold cluster of an exceptional size. Chem. Ber. Recl. 114 (11): 3634–3642.

      45 45 Weare, W.W., Reed, S.M., Warner, M.G., and Hutchison, J.E. (2000). Improved synthesis of small (d(CORE) approximate to 1.5 nm) phosphine‐stabilized gold nanoparticles. J. Am. Chem. Soc. 122 (51): 12890–12891.

      46 46 Rapoport, D.H., Vogel, W., Cölfen, H., and Schlögl, R. (1997). Ligand‐stabilized metal clusters: reinvestigation of the structure of “Au55[P(C6H5)3]12Cl6”. J. Phys. Chem. B 101 (21): 4175–4183.

      47 47 Garden, A.L., Pedersen, A., and Jónsson, H. (2018). Reassignment of ‘magic numbers’ for Au clusters of decahedral and FCC structural motifs. Nanoscale 10 (11): 5124–5132.

      48 48 Walter, M., Akola, J., Lopez‐Acevedo, O. et al. (2008). A unified view of ligand‐protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. U.S.A. 105 (27): 9157–9162.

      49 49 Butcher, C.P.G., Dinca, A., Dyson, P.J. et al. (2003). A strategy for generating naked‐metal clusters for gas‐phase reactivity studies by FTICR–MS. Angew. Chem. Int. Ed. 42 (46): 5752–5755.

      50 50 Henderson, M.A., Kwok, S., and McIndoe, J.S. (2009). Gas‐phase reactivity of ruthenium carbonyl cluster anions. J. Am. Soc. Mass. Spectrom. 20 (4): 658–666.

      51 51 Pignolet, L.H., Aubart, M.A., Craighead, K.L. et al. (1995). Phosphine‐stabilized, platinum–gold and palladium–gold cluster compounds and applications in catalysis. Coord. Chem. Rev. 143: 219–263.

      52 52 Castiglioni, M., Deabate, S., Giordano, R. et al. (1998). Homogeneous hydrogenation of alkynes and of 1,4‐cyclohexadiene in the presence of the clusters Ru3(CO)7(μ‐PPh2)2(C6H4), Ru4(CO)11(μ4‐PPh)(C6H4), Ru3(CO)7(μ‐PPh2)2(HC2Ph) and Ru4(CO)11(μ4‐PPh)(C2Ph2). J. Organomet. Chem. 571 (2): 251–260.

      53 53 Adams, R.D. (2000). Metal segregation in bimetallic clusters and its possible role in synergism and bifunctional catalysis. J. Organomet. Chem. 600 (1): 1–6.

      54 54 Zhu, Y., Qian, H., Drake, B.A., and Jin, R. (2010). Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α,β‐unsaturated ketones and aldehydes. Angew. Chem. Int. Ed. 49 (7): 1295–1298.

      55 55 Abdel‐Magied, A.F., Patil, M.S., Singh, A.K. et al. (2015). Synthesis, characterization and catalytic activity studies of rhenium carbonyl complexes containing chiral diphosphines of the Josiphos and Walphos families. J. Cluster Sci. 26 (4): 1231–1252.

      56 56 Pelayo, J.J., Valencia, I., Garcia, A.P. et al. (2018). Chirality in bare and ligand‐protected metal nanoclusters. Adv. Phys. 3 (1): 1509727.

      57 57 Oliver‐Meseguer, J., Cabrero‐Antonino, J.R., Domínguez, I. et al. (2012). Small gold clusters formed in solution give reaction turnover numbers of 107 at room temperature. Science 338 (6113): 1452–1455.

      58 58 Zhang, Q.‐F., Chen, X., and Wang, L.‐S. (2018). Toward solution syntheses of the tetrahedral Au20 pyramid and atomically precise gold nanoclusters with uncoordinated sites. Acc. Chem. Res. 51 (9): 2159–2168.

      59 59 Chisholm, D.M. and Scott McIndoe, J. (2008). Charged ligands for catalyst immobilisation and analysis. Dalton Trans. 30: 3933–3945.

      60 60 Thomas, J.M., Johnson, B.F.G., Raja, R. et al.


Скачать книгу