Heterogeneous Catalysts. Группа авторов

Heterogeneous Catalysts - Группа авторов


Скачать книгу
M. (1992). Metal cluster compounds as molecular precursors for tailored metal catalysts. In: Advances in Catalysis, vol. 38 (eds. D.D. Eley, H. Pines and P.B. Weisz), 283–400. Academic Press.

      62 62 Gates, B.C. (1995). Supported metal clusters: synthesis, structure, and catalysis. Chem. Rev. 95 (3): 511–522.

      63 63 Kulkarni, A., Lobo‐Lapidus, R.J., and Gates, B.C. (2010). Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties. Chem. Commun. 46 (33): 5997–6015.

      64 64 Shephard, D.S., Maschmeyer, T., Johnson, B.F.G. et al. (1997). Bimetallic nanoparticle catalysts anchored inside mesoporous silica. Angew. Chem. Int. Ed. Engl. 36 (20): 2242–2245.

      65 65 Shephard, D.S., Maschmeyer, T., Sankar, G. et al. (1998). Preparation, characterisation and performance of encapsulated copper–ruthenium bimetallic catalysts derived from molecular cluster carbonyl precursors. Chem. Eur. J. 4 (7): 1214–1224.

      66 66 Zhou, W., Thomas, J.M., Shephard, D.S. et al. (1998). Ordering of ruthenium cluster carbonyls in mesoporous silica. Science 280 (5364): 705–708.

      67 67 Turner, M., Golovko, V.B., Vaughan, O.P.H. et al. (2008). Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55‐atom clusters. Nature 454 (7207): 981–984.

      68 68 Menard, L.D., Xu, F., Nuzzo, R.G., and Yang, J.C. (2006). Preparation of TiO2‐supported Au nanoparticle catalysts from a Au13 cluster precursor: ligand removal using ozone exposure versus a rapid thermal treatment. J. Catal. 243 (1): 64–73.

      69 69 Liu, Y., Tsunoyama, H., Akita, T., and Tsukuda, T. (2009). Preparation of ∼1 nm gold clusters confined within mesoporous silica and microwave‐assisted catalytic application for alcohol oxidation. J. Phys. Chem. C 113 (31): 13457–13461.

      70 70 Liu, Y.M., Tsunoyama, H., Akita, T. et al. (2011). Aerobic oxidation of cyclohexane catalyzed by size‐controlled Au clusters on hydroxyapatite: size effect in the sub‐2 nm regime. ACS Catal. 1 (1): 2–6.

      71 71 Azubel, M., Koh, A.L., Koyasu, K. et al. (2017). Structure determination of a water‐soluble 144‐gold atom particle at atomic resolution by aberration‐corrected electron microscopy. ACS Nano 11 (12): 11866–11871.

      72 72 Al Qahtani, H.S., Kimoto, K., Bennett, T. et al. (2016). Atomically resolved structure of ligand‐protected Au9 clusters on TiO2 nanosheets using aberration‐corrected STEM. J. Chem. Phys. 144 (11): 114703.

      73 73 Yamazoe, S., Yoskamtorn, T., Takano, S. et al. (2016). Controlled synthesis of carbon‐supported gold clusters for rational catalyst design. Chem. Rec. 16 (5): 2338–2348.

      74 74 Donoeva, B.G., Ovoshchnikov, D.S., and Golovko, V.B. (2013). Establishing a Au nanoparticle size effect in the oxidation of cyclohexene using gradually changing Au catalysts. ACS Catal. 3 (12): 2986–2991.

      75 75 Negishi, Y., Matsuura, Y., Tomizawa, R. et al. (2015). Controlled loading of small Aun clusters (n = 10–39) onto BaLa4Ti4O15 photocatalysts: toward an understanding of size effect of cocatalyst on water‐splitting photocatalytic activity. J. Phys. Chem. C 119 (20): 11224–11232.

      76 76 Ovoshchnikov, D.S., Donoeva, B.G., Williamson, B.E., and Golovko, V.B. (2014). Tuning the selectivity of a supported gold catalyst in solvent‐ and radical initiator‐free aerobic oxidation of cyclohexene. Catal. Sci. Technol. 4 (3): 752–757.

      77 77 Kurashige, W., Kumazawa, R., Ishii, D. et al. (2018). Au25‐loaded BaLa4Ti4O15 water‐splitting photocatalyst with enhanced activity and durability produced using new chromium oxide shell formation method. J. Phys. Chem. C 122 (25): 13669–13681.

      78 78 Buchwalter, P., Rosé, J., and Braunstein, P. (2015). Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev. 115 (1): 28–126.

      79 79 Liu, L. and Corma, A. (2018). Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118 (10): 4981–5079.

      80 80 Zanella, R., Giorgio, S., Shin, C.‐H. et al. (2004). Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition‐precipitation with NaOH and urea. J. Catal. 222 (2): 357–367.

      81 81 Sachtler, W.M.H. and Zhang, C.Z. (2008). Metal clusters in zeolites. In: Handbook of Heterogeneous Catalysis, vol. 1 (eds. G. Ertl, H. Knözinger, F. Schüth and J. Weitkamp), 510–522. Wiley‐VCH.

      82 82 Fortea‐pérez, F.R., Mon, M., Ferrando‐soria, J. et al. (2017). The MOF‐driven synthesis of supported palladium clusters with catalytic activity for carbene‐mediated chemistry. Nat. Mater. 16 (7): 760–766.

      83 83 Grundner, S., Markovits, M.A.C., Li, G. et al. (2015). Single‐site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6: 7546.

      84 84 Vogiatzis, K.D., Li, G., Hensen, E.J.M. et al. (2017). Electronic structure of the [Cu3(μ‐O)3]2+ cluster in mordenite zeolite and its effects on the methane to methanol oxidation. J. Phys. Chem. C 121 (40): 22295–22302.

      85 85 Tomkins, P., Mansouri, A., Bozbag, S.E. et al. (2016). Isothermal cyclic conversion of methane into methanol over copper‐exchanged zeolite at low temperature. Angew. Chem. Int. Ed. 55 (18): 5467–5471.

      86 86 Narsimhan, K., Iyoki, K., Dinh, K., and Román‐Leshkov, Y. (2016). Catalytic oxidation of methane into methanol over copper‐exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2 (6): 424–429.

      87 87 Liu, L., Zakharov, D.N., Arenal, R. et al. (2018). Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9 (1): 574.

      88 88 Carvill, B.T., Lerner, B.A., Adelman, B.J. et al. (1993). Increased catalytic activity caused by local destruction of linear zeolite channels: effect of reduction temperature on heptane conversion over platinum supported in H‐mordenite. J. Catal. 144 (1): 1–8.

       Yaxin Chen, Zhen Ma, and Xingfu Tang

       Fudan University, Department of Environmental Science & Engineering, 2005 Songhu Rd., Shanghai, 200438, PR China

      Supported noble metal catalysts have been widely used in the production of chemicals [1], the remediation of environmental pollution [2, 3], and the processing of fuels [4, 5]. However, it is still desirable to increase the efficiency of supported noble metal catalysts due to the high prices and limited supplies of noble metals. To achieve this goal, one may attempt to design better supported catalysts by decreasing the content of the noble metals while maintaining their high catalytic efficiency. Thus, the sustainability of related industries can be improved, and the costs of production can be minimized.

Prices of different bricks with a size of 20 × 10 × 5 cm3. (a) A gold brick, (b) a common brick, and (c) a common brick coated with a single atomic layer of gold atoms.
Скачать книгу