3D Printing for Energy Applications. Группа авторов

3D Printing for Energy Applications - Группа авторов


Скачать книгу
doi:10.1007/978‐1‐4419‐1120‐9

      3 3 Wohlers Report (2020). Analysis. Trends. Forecasts. Feel the pulse of the 3D printing industry. Wohlers Associates.

      4 4 Hofmann, D. C., Kolodziejska, J., Roberts, S., Otis, R., Dillon, R. P., Suh, J. O., . . . Borgonia, J. P. (2014). Compositionally graded metals: A new frontier of additive manufacturing. Journal of Materials Research, 29(17), 1899–1910. doi:10.1557/jmr.2014.208

      5 5 Sobczak, J. J. J., & Drenchev, L. (2013). Metallic functionally graded materials: A specific class of advanced composites. Journal of Materials Science and Technology, 29(4), 297–316. doi:10.1016/j.jmst.2013.02.006

      6 6 MacDonald, E., & Wicker, R. (2016). Multiprocess 3D printing for increasing component functionality. Science, 353(6307), aaf2093‐1–aaf2093‐8. doi:10.1126/science.aaf2093

      7 7 GE Additive. (n.d.). New manufacturing milestone: 30,000 additive fuel nozzles. Retrieved from https://www.ge.com/additive/stories/new‐manufacturing‐milestone‐30000‐additive‐fuel‐nozzles

      8 8 Siemens Global. (n.d.). Additive manufacturing. Energy topics. Retrieved from https://new.siemens.com/global/en/products/energy/topics/additive‐manufacturing.html

      9 9 Oerlikon AM. (n.d.). AM in Power Generation. Energy Market. Retrieved from https://www.oerlikon.com/am/en/markets/power‐generationenergy/

      10 10 Biome Renewables. (n.d.). PowerCone. Retrieved from https://www.biome‐renewables.com/powercone

      11 11 aidro. (n.d.). Additive manufacturing in hydraulics. Retrieved from https://www.aidro.it/3d‐metal‐printing.html

      12 12 ORNL. (n.d.). 3D‐printed nuclear reactor promises faster, more economical path to nuclear energy. Retrieved from https://www.ornl.gov/news/3d‐printed‐nuclear‐reactor‐promises‐faster‐more‐economical‐path‐nuclear‐energy

      13 13 OPTISYS. (n.d.). High bandwidth antennas. Retrieved from https://www.optisys.tech/blog/tag/Additive‐Manufacturing

      14 14 EOS GmbH. (n.d.). Manufacture heat exchangers additively. Retrieved from https://www.eos.info/en/3d‐printing‐examples‐applications/production‐and‐industry/electronical‐components/heatexchanger‐additive‐manufacturing

      15 15 Hegab, H. A. (2016). Design for additive manufacturing of composite materials and potential alloys: A review. Manufacturing Review, 3, 1–17. doi:10.1051/mfreview/2016010

      16 16 Naebe, M., & Shirvanimoghaddam, K. (2016). Functionally graded materials: A review of fabrication and properties. Applied Materials Today, 5, 223–245. doi:10.1016/j.apmt.2016.10.001

      17 17 Loh, G. H., Pei, E., Harrison, D., & Monzón, M. D. (2018). An overview of functionally graded additive manufacturing. Additive Manufacturing, 23, 34–44. doi:10.1016/j.addma.2018.06.023

      18 18 Rafiee, M., Farahani, R. D., & Therriault, D. (2020). Multi‐material 3D and 4D printing: A survey. Advanced Science, 7(12), 1902307‐1–1902307‐26. doi:10.1002/advs.201902307

      19 19 Pascale, D., & Simion, I. (2018). Multi‐material 3D printer extruder concept. Journal of Industrial Design and Engineering Graphics, 13(1), 25–28.

      20 20 Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi‐material structures. Materials Science and Engineering R: Reports, 129, 1–16.

      21 21 Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., Amato, K. N., . . . Wicker, R. B. (2012). Metal fabrication by additive manufacturing using laser and electron beam melting technologies. Journal of Materials Science and Technology, 28(1), 1–14. doi:10.1016/S1005‐0302(12)60016‐4

      22 22 DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., . . . Zhang, W. (2018). Additive manufacturing of metallic components: Process, structure and properties. Progress in Materials Science, 92, 112–224. doi:10.1016/j.pmatsci.2017.10.001

      23 23 Gu, D. D., Meiners, W., Wissenbach, K., & Poprawe, R. (2012). Laser additive manufacturing of metallic components: Materials, processes and mechanisms. International Materials Reviews, 57(3), 133–164. doi:10.1179/1743280411Y.0000000014

      24 24 Ashby, M. F. (2006). The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838), 15–30. doi:10.1098/rsta.2005.1678

      25 25 Simone, A. E., & Gibson, L. J. (1998). The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams. Acta Materialia, 46(11), 3929–3935. doi:10.1016/S1359‐6454(98)00072‐X

      26 26 Maskery, I., Aboulkhair, N. T., Aremu, A. O., Tuck, C. J., Ashcroft, I. A., Wildman, R. D., & Hague, R. J. M. (2016). A mechanical property evaluation of graded density Al‐Si10‐Mg lattice structures manufactured by selective laser melting. Materials Science and Engineering A, 670, 264–274. doi:10.1016/j.msea.2016.06.013

      27 27 Choy, S. Y. S. Y., Sun, C. N. C.‐N., Leong, K. F. K. F., & Wei, J. (2017). Compressive properties of functionally graded lattice structures manufactured by selective laser melting. Materials and Design, 131(June), 112–120. doi:10.1016/j.matdes.2017.06.006

      28 28 Li, S., Hassanin, H., Attallah, M. M., Adkins, N. J. E., & Essa, K. (2016). The development of TiNi‐based negative Poisson's ratio structure using selective laser melting. Acta Materialia, 105, 75–83. doi:10.1016/j.actamat.2015.12.017

      29 29 Tan, C., Li, S., Essa, K., Jamshidi, P., Zhou, K., Ma, W., & Attallah, M. M. M. M. (2019). Laser powder bed fusion of Ti‐rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations. International Journal of Machine Tools and Manufacture, 141(January), 19–29. doi:10.1016/j.ijmachtools.2019.04.002

      30 30 Carluccio, D., Demir, A. G., Bermingham, M. J., & Dargusch, M. S. (2020). Challenges and opportunities in the selective laser melting of biodegradable metals for load‐bearing bone scaffold applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 51, 3311–3334. doi:10.1007/s11661‐020‐05796‐z

      31 31 Hazlehurst, K. B., Wang, C. J., & Stanford, M. (2014). An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting. Materials and Design, 60, 177–183. doi:10.1016/j.matdes.2014.03.068

      32 32 Ataee, A., Li, Y., Fraser, D., Song, G., & Wen, C. (2018). Anisotropic Ti‐6Al‐4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Materials and Design, 137, 345–354. doi:10.1016/j.matdes.2017.10.040

      33 33 Yan, C., Hao, L., Hussein, A., & Young, P. (2015). Ti‐6Al‐4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 51, 61–73. doi:10.1016/j.jmbbm.2015.06.024

      34 34 Yu, S., Sun, J., & Bai, J. (2019). Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Materials and Design, 182, 108021. doi:10.1016/j.matdes.2019.108021

      35 35 Zhang, X.‐Y., Fang, G., Leeflang, S., Zadpoor, A. A., & Zhou, J. (2019). Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomaterialia, 84, 437–452.


Скачать книгу