3D Printing for Energy Applications. Группа авторов

3D Printing for Energy Applications - Группа авторов


Скачать книгу
Li, F., Gao, Z., Li, L., & Chen, Y. (2016). Microstructural study of MMC layers produced by combining wire and coaxial WC powder feeding in laser direct metal deposition. Optics and Laser Technology, 77, 134–143. doi:10.1016/j.optlastec.2015.09.018

      69 69 Hofmann, D. C., Roberts, S., Otis, R., Kolodziejska, J., Dillon, R. P., Suh, J.‐O., . . . Borgonia, J.‐P. (2014). Developing gradient metal alloys through radial deposition additive manufacturing. Scientific Reports, 4, 5357‐1–5357‐8. doi:10.1038/srep05357

      70 70 Heer, B., & Bandyopadhyay, A. (2018). Compositionally graded magnetic‐nonmagnetic bimetallic structure using laser engineered net shaping. Materials Letters, 216, 16–19. doi:10.1016/j.matlet.2017.12.129

      71 71 Akinlabi, E. T., & Akinlabi, S. A. (2014). Friction stir welding of dissimilar metals. In M.‐K. Besharati‐Givi & P. Asadi (Eds.), Advances in Friction‐Stir Welding and Processing. Cambridge: Woodhead Publishing. doi:10.1533/9780857094551.241

      72 72 Domack, M. S., & Baughman, J. M. (2005). Development of nickel‐titanium graded composition components. Rapid Prototyping Journal, 11(1), 41–51. doi:10.1108/13552540510573383

      73 73 Dilip, J. J. S., & Ram, G. D. J. (2013). Microstructure evolution in aluminum alloy AA 2014 during multi‐layer friction deposition. Materials Characterization, 86, 146–151.

      74 74 Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H., Li, W., & Lupoi, R. (2018). Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing, 21, 628–650.

      75 75 Yin, S., Yan, X., Chen, C., Jenkins, R., Liu, M., & Lupoi, R. (2018). Hybrid additive manufacturing of Al‐Ti6Al4V functionally graded materials with selective laser melting and cold spraying. Journal of Materials Processing Technology, 255, 650–655. doi:10.1016/j.jmatprotec.2018.01.015

      76 76 Nadimpalli, V. K., & Nagy, P. B. (2018). Designing an in‐situ ultrasonic nondestructive evaluation system for ultrasonic additive manufacturing. AIP Conference Proceedings, 1949, 020005‐1–020005‐9. doi:10.1063/1.5031502

      77 77 Nadimpalli, V. K., Yang, L., & Nagy, P. B. (2018). In‐situ interfacial quality assessment of Ultrasonic Additive Manufacturing components using ultrasonic NDE. NDT and E International, 93, 117–130. doi:10.1016/j.ndteint.2017.10.004

      78 78 Sridharan, N., Wolcott, P., Dapino, M., & Babu, S. S. S. S. (2017). Microstructure and mechanical property characterisation of aluminium–steel joints fabricated using ultrasonic additive manufacturing. Science and Technology of Welding and Joining, 22(5), 373–380. doi:10.1080/13621718.2016.1249644

      79 79 Wolcott, P. J. J., Sridharan, N., Babu, S. S. S., Miriyev, A., Frage, N., & Dapino, M. J. J. (2016). Characterisation of Al–Ti dissimilar material joints fabricated using ultrasonic additive manufacturing. Science and Technology of Welding and Joining, 21(2), 114–123. doi:10.1179/1362171815Y.0000000072

      80 80 Stucker, B. E., Obielodan, J. O., Ceylan, A., & Murr, L. E. (2010). Multi‐material bonding in ultrasonic consolidation. Rapid Prototyping Journal, 16(3), 180–188. doi:10.1108/13552541011034843

      81 81 Kumar, S., & Kruth, J.‐P. (2010). Composites by rapid prototyping technology. Materials and Design, 31(2), 850–856. doi:10.1016/j.matdes.2009.07.045

      82 82 Guo, H., Gingerich, M. B., Headings, L. M., Hahnlen, R., & Dapino, M. J. (2019). Joining of carbon fiber and aluminum using ultrasonic additive manufacturing (UAM). Composite Structures, 208, 180–188. doi:10.1016/j.compstruct.2018.10.004

      83 83 Yang, Y., Janaki Ram, G. D. D., & Stucker, B. E. E. (2009). Bond formation and fiber embedment during ultrasonic consolidation. Journal of Materials Processing Technology, 209(10), 4915–4924. doi:10.1016/j.jmatprotec.2009.01.014

      84 84 Obielodan, J., & Stucker, B. (2014). A fabrication methodology for dual‐material engineering structures using ultrasonic additive manufacturing. International Journal of Advanced Manufacturing Technology, 70(1–4), 277–284. doi:10.1007/s00170‐013‐5266‐5

      85 85 Dapino, M. J. (2014). Smart structure integration through ultrasonic additive manufacturing. ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014, 2. 10.1115/SMASIS20147710.

      86 86 Hehr, A., Wenning, J., Terrani, K., Babu, S. S., & Norfolk, M. (2017). Five‐axis ultrasonic additive manufacturing for nuclear component manufacture. JOM, 69(3), 485–490. doi:10.1007/s11837‐016‐2205‐6

      87 87 Petrie, C. M. C. M., Sridharan, N., Subramanian, M., Hehr, A., Norfolk, M., & Sheridan, J. (2019). Embedded metallized optical fibers for high temperature applications. Smart Materials and Structures, 28(5), 055012‐1–055012‐33. doi:10.1088/1361‐665X/ab0b4e

      88 88 Bournias‐Varotsis, A., Friel, R. J., Harris, R. A., & Engstrøm, D. S. (2018). Ultrasonic Additive Manufacturing as a form‐then‐bond process for embedding electronic circuitry into a metal matrix. Journal of Manufacturing Processes, 32, 664–675. doi:10.1016/j.jmapro.2018.03.027

      89 89 Sriraman, M. R., Babu, S. S., & Short, M. (2010). Bonding characteristics during very high power ultrasonic additive manufacturing of copper. Scripta Materialia, 62(8), 560–563. doi:10.1016/j.scriptamat.2009.12.040

      90 90 Janaki Ram, G. D., Yang, Y., & Stucker, B. E. (2006). Effect of process parameters on bond formation during ultrasonic consolidation of aluminum alloy 3003. Journal of Manufacturing Systems, 25(3), 221–238. doi:10.1016/S0278‐6125(07)80011‐2

      91 91 Fabrisonic. (n.d.). Embedding sensors and electronics. Retrieved from https://fabrisonic.com/applications/

      92 92 Gonzalez‐Gutierrez, J., Cano, S., Schuschnigg, S., Kukla, C., Sapkota, J., & Holzer, C. (2018). Additive manufacturing of metallic and ceramic components by the material extrusion of highly‐filled polymers: A review and future perspectives. Materials, 11(5), 840‐1–840‐36. doi:10.3390/ma11050840

      93 93 Pedersen, D. B., Andersen, S. A., & Hansen, H. N. (2019). Measurements in Additive Manufacturing (pp. 369–397). USA: Springer. doi:10.1007/978‐981‐10‐4938‐5_13

      94 94 Holo Additive Manufacturing. (n.d.). PureForm Technology. Retrieved from https://holoam.com/technology/

      95 95 Salcedo, E., Baek, D., Berndt, A., & Ryu, J. E. (2018). Simulation and validation of three dimension functionally graded materials by material jetting. Additive Manufacturing, 22, 351–359. doi:10.1016/j.addma.2018.05.027

      96 96 Sufiiarov, V., Polozov, I., Kantykov, A., & Khaidorov, A. (2020). Binder jetting additive manufacturing of 420 stainless steel: Densification during sintering and effect of heat treatment on microstructure and hardness. Materials Today: Proceedings.

      97 97 Thompson, Y., Gonzalez‐Gutierrez, J., Kukla, C., & Felfer, P. (2019). Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Additive Manufacturing, 30, 100861.

      98 98 Larsen, U. D., Signund, O., & Bouwsta, S. (1997). Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio. Journal of Microelectromechanical Systems, 6(2), 99–106.

      99 99 Takezawa, A., Kobashi, M., & Kitamura, M. (2015). Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing. APL Materials, 3(7), 76103.

      100 100 Andersen, P. R., Henríquez, V. C., & Aage, N. (2019). Shape optimization of micro‐acoustic devices including viscous and thermal losses. Journal of Sound and Vibration, 447, 120–136.

      101 101 Wu, J., Aage, N., Westermann, R., & Sigmund, O. (2017). Infill optimization for additive manufacturing: Approaching bone‐like porous structures. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1127–1140.

      102 102 Martin, J. J., Fiore, B. E., & Erb, R. M. (2015). Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nature Communications, 6, 8641‐1–8641‐7.


Скачать книгу