Electrical and Electronic Devices, Circuits, and Materials. Группа авторов
R. Marcilla, Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids, J. Power Sources 326 (2016) 560e568.
35. Wang, H., Yi, H., Chen, X., & Wang, X. (2014). Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. Journal of Materials Chemistry A, 2(9), 3223-3230.
36. Eilmes, A.; Kubisiak, P. A Quantum-Chemical Study On the Boron Centers in Nonaqueous Electrolyte Solutions and Polymer Electrolytes. Electrochim. Acta 2011, 56, 3219−3224.
37. Du, H., Wu, Z., Xu, Y., Liu, S., & Yang, H. (2020). Poly (3, 4-ethylenedioxythiophene) Based Solid-State Polymer Supercapacitor with Ionic Liquid Gel Polymer Electrolyte. Polymers, 12(2), 297
38. Wu, J.; Gong, X.L.; Fan, Y.C.; Xia, H.S. Physically Crosslinked Poly(vinyl alcohol) Hydrogels with Magnetic Field Controlled Modulus. Soft Matter 2011, 7, 6205–6212.
39. Alexandre, S. A., Silva, G. G., Santamaría, R., Trigueiro, J. P. C., & Lavall, R. L. (2019). A highly adhesive PIL/IL gel polymer electrolyte for use in flexible solid state supercapacitors. Electrochimica Acta, 299, 789-799.
40. Wang, F., Wu, X., Yuan, X., Liu, Z., Zhang, Y., Fu, L., ... & Huang, W. (2017). Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 46(22), 6816-6854.
41. Yan, C., Jin, M., Pan, X., Ma, L., & Ma, X. (2020). A flexible polyelectrolyte-based gel polymer electrolyte for high-performance all-solid-state supercapacitor application. RSC Advances, 10(16), 9299-9308.
42. Senthilkumar, S. T., Selvan, R. K., Ponpandian, N., & Melo, J. S. (2012). Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor. RSC advances, 2(24), 8937-8940.
43. Yadav, N., Yadav, N., Singh, M. K., & Hashmi, S. A. (2019). Nonaqueous, Redox-Active Gel Polymer Electrolyte for High-Performance Supercapacitor. Energy Technology, 7(9), 1900132.
44. Peng, X., Liu, H., Yin, Q., Wu, J., Chen, P., Zhang, G., ... & Xie, Y. (2016). A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nature communications, 7, 11782.
45. Lu, C., & Chen, X. (2019). In situ synthesized PEO/NBR composite ionogels for high-performance all-solid-state supercapacitors. Chemical Communications, 55(58), 8470-8473.
46. Bruce, P. G., Scrosati, B., & Tarascon, J. M. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47(16), 2930-2946.
47. Das, S., & Ghosh, A. (2020). Symmetric electric double-layer capacitor containing imidazolium ionic liquid-based solid polymer electrolyte: Effect of TiO2 and ZnO nanoparticles on electrochemical behavior. Journal of Applied Polymer Science, 137(22), 48757.
48. Pal, P., & Ghosh, A. (2018). Solid-state gel polymer electrolytes based on ionic liquids containing imidazolium cations and tetrafluoroborate anions for electrochemical double layer capacitors: Influence of cations size and viscosity of ionic liquids. Journal of Power Sources, 406, 128-140.
49. Choi, Y. J., Jung, D. S., Han, J. H., Lee, G. W., Wang, S. E., Kim, Y. H., ... & Kim, K. B. (2019). Nanofiber Cellulose-Incorporated Nanomesh Graphene–Carbon Nanotube Buckypaper and Ionic Liquid-Based Solid Polymer Electrolyte for Flexible Supercapacitors. Energy Technology, 7(5), 1900014.
50. Jin, J., Mu, H., Wang, W., Li, X., Cheng, Q., & Wang, G. (2019). Long-life flexible supercapacitors based on nitrogen-doped porous graphene@ π-conjugated polymer film electrodes and porous quasi-solid-state polymer electrolyte. Electrochimica Acta, 317, 250-260.
51. Pal, B., Yang, S., Ramesh, S., Thangadurai, V., & Jose, R. (2019). Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances, 1(10), 3807-3835.
52. Kang, D. A., Kim, K., Karade, S. S., Kim, H., & Kim, J. H. (2020). High-performance solid-state bendable supercapacitors based on PEGBEM-g-PAEMA graft copolymer electrolyte. Chemical Engineering Journal, 384, 123308.
53. Sudhakar, Y. N., & Selvakumar, M. (2012). Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochimica acta, 78, 398-405.
54. Tiruye, G. A., Munoz-Torrero, D., Palma, J., Anderson, M., & Marcilla, R. (2015). All-solid state supercapacitors operating at 3.5 V by using ionic liquid based polymer electrolytes. Journal of Power Sources, 279, 472-480.
55. Zhong, J., Fan, L. Q., Wu, X., Wu, J. H., Liu, G. J., Lin, J. M., ... & Wei, Y. L. (2015). Improved energy density of quasi-solid-state supercapacitors using sandwich-type redox-active gel polymer electrolytes. Electrochimica Acta, 166, 150-156.
56. Liew, C. W., Ramesh, S., & Arof, A. K. (2014). Good prospect of ionic liquid based-poly (vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. International Journal of Hydrogen Energy, 39(6), 2953-2963.
57. Arof, A. K., Kufian, M. Z., Syukur, M. F., Aziz, M. F., Abdelrahman, A. E., & Majid, S. R. (2012). Electrical double layer capacitor using poly (methyl methacrylate)–C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit. Electrochimica acta, 74, 39-45.
58. Syahidah, S. N., & Majid, S. R. (2013). Super-capacitive electro-chemical performance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors. Electrochimica Acta, 112, 678-685.
59. Liew, C. W., Arifin, K. H., Kawamura, J., Iwai, Y., Ramesh, S., & Arof, A. K. (2017). Effect of halide anions in ionic liquid added poly (vinyl alcohol)-based ion conductors for electrical double layer capacitors. Journal of Non-Crystalline Solids, 458, 97-106.
60. Tiruye, G. A., Muñoz-Torrero, D., Palma, J., Anderson, M., & Marcilla, R. (2016). Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids. Journal of Power Sources, 326, 560-568.
61. Kumar, Y., Pandey, G. P., & Hashmi, S. A. (2012). Gel polymer electrolyte based electrical double layer capacitors: comparative study with multiwalled carbon nanotubes and activated carbon electrodes. Journal of Physical Chemistry C, 116(50), 26118-26127.
62. Karaman, B., Çevik, E., & Bozkurt, A. (2019). Novel flexible Li-doped PEO/copolymer electrolytes for supercapacitor application. Ionics, 25(4), 1773-1781.
63. Yu, H., Wu, J., Fan, L., Lin, Y., Xu, K., Tang, Z., ... & Lan, Z. (2012). A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor. Journal of Power Sources, 198, 402-407.
* Corresponding author: [email protected]
4 Tunable RF/Microwave Filter with Fractal DGS
Mehul Thakkar1,2*, Pravin R. Prajapati1,2 and Hitesh Shah2,3
1A.D.Patel Institite of Technology, New V V Nagar, Gujarat, India
2Gujarat Technological University, Gujarat, India
3G H Patel College of Engineeing and Technology, V V Nagar, Gujarat, India
Abstract
Due to the latest developments in multi-standard software defined radios and adaptive spectrum surveillance systems, over several years, the design of efficient high-frequency filters has become a popular and established research area in the field of application