Handbook of Enology: Volume 1. Pascal Ribéreau-Gayon
of higher alcohols in S. cerevisiae depends on the strain. Limited production of higher alcohols (with the exception of phenylethanol) should be among the selection criteria for wine yeasts.
TABLE 2.4 The Principal Higher Alcohols Found in Wine and Their Amino Acid Precursors
Higher alcohol | Concentration in wine (mg/1) | Amino acid precursor |
---|---|---|
|
80–300 |
|
|
30–100 |
|
|
50–150 |
|
|
10–100 |
|
|
20–50 |
|
|
10–50 | ? |
|
1–10 | ? |
|
0–1 |
|
|
0–5 |
|
|
0–5 |
|
Due to their esterase activities, yeasts form various esters (a few milligrams per liter). The most important acetates of higher alcohols are isoamyl acetate (banana aroma) and phenylethyl acetate (rose aroma). Although they are not linked to nitrogen metabolism, ethyl esters of medium‐chain fatty acids are also involved. They are formed by the condensation of acetyl‐CoA. These esters have more interesting aromas than the others. Hexanoate has a flowery and fruity aroma reminiscent of green apples. Ethyl decanoate has a soap‐like odor. In white winemaking, the production of these esters can be increased by lowering the fermentation temperature and increasing must clarification. Certain yeast strains (71B) produce large quantities of these compounds, which contribute to the fermentation aroma of young wines. They are rapidly hydrolyzed during their first year in bottle and have no long‐term influence on the aroma of white wines.
References
1 Alexandre H., Nguyen Van Long T., Feuillat M. and Charpentier C. (1994) Rev. Fr. Œnol., cahiers scientifiques, 146, 11.
2 Attfield P.V., Kletsas S., Veal D.A., Van Rooijen R. and Bell P.J.L. (2000) J. Appl. Microbiol., 89, 207–214.
3 Bakker B.M., Overkamp K.M., van Maris A.J., Kötter P., Luttik M.A., van Dijken S.P. and Pronk J.T. (2001) FEMS Microbiol. Rev., 25, 1, 15.
4 Beltran G., Novo M., Rozès N., Mas A. and Guillamon J.M. (2004) FEMS Yeast Res., 4, 625.
5 Bely M., Rinaldi A. and Dubourdieu D. (2003) J. Biosci. Bioeng., 96, 6, 507.
6 Bely M., Masneuf‐Pomarède I. and Dubourdieu D. (2005) Œno One, 39, 191.
7 Bely M., Stoeckle P., Masneuf‐Pomarède I. and Dubourdieu D. (2008) Int. J. Food Microbiol., 122, 312.
8 Bisson L.F. (1993) Yeasts‐metabolism of sugars. In Wine Microbiology and Biotechnology, 55–75 (Ed G.H. Fleet). Harwood Academic Publishers, Chur.
9 Blomberg A. and Alder L. (1992) Adv. Microbiol. Physiol., 33, 145.
10 Blondin B., Dequin S., Saint Prix F. and Sablayrolles J.M. (2002) La formation d’acides volatils par les levures, dans 13ième Symposium international d’œnologie 9–10 Juin 2002, INSA/INRA, Montpellier, France.
11 Buchner E. (1897) Über die alkoholische Gärung ohne Hefezellen. In Berichte der deutschen chemischen Gesellschaft, January–April 1897, p. 1110.
12 Camarasa C., Grivet J.P. and Dequin S. (2003) Microbiol., 149, 2669.
13 Carre E., Lafon‐Lafourcade S. and Bertrand A. (1983) Œno One, 17, 43.
14 Cartwright C.P., Rose A.H., Calderbank J. and Keenan M.H.J. (1989) Solute transport. In The Yeasts, Vol. 3, p. 5 (Eds A.H. Rose and J.S. Harrison). Academic Press, London.
15 Caubet R., Guérin B. and Guérin M. (1988) Arch. Microbiol., 149, 324.
16 Cooper T.G. (1982) Nitrogen metabolism in Saccharomyces cerevisiae. In The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, pp. 39–99 (Eds J.N. Strathern, E.W. Jones and J.R. Broach). Cold Spring Harbor Laboratory Press, New York.
17 Crabtree H.G. (1929) Biochem. J., 23, 536.
18 De Revel G., Lonvaud‐Funel A. and Bertrand A. (1996) Étude des composés dicarbonylés au cours des fermentations alcoolique et malolactique. In Œnologie 95, 5e Symposium