Becoming a Data Head. Alex J. Gutman

Becoming a Data Head - Alex J. Gutman


Скачать книгу

       The mean is the sum of all the numbers you have divided by the count of all the numbers. The effect of this operation is to give you a sense of what each observation in your series contributes to the entire sum if every observation generated the same amount. The mean is also called the average.

       The median is the midpoint of the entire data range if you sorted it in order.

       The mode is the most common number in the dataset.

      Mean, median, and mode are called measures of location or measures of central tendency. Measures of variation—variance, range, and standard deviation—are measures of spread. The location number tells you where on the number line a typical value falls and spread tells you how spread out the other numbers are from that value.

      It's a common mistake for people to use the average (mean) to represent the midpoint of the data, which is the median. They assume half the numbers must be above average, and half below. This isn't true. In fact, it's common for most of the data to be below (or above) the average. For example, the vast majority of people have greater than the average number of fingers (likely 9.something).

      To avoid confusion and misconceptions, we recommend sticking with mean or average, median, and mode for full transparency. Try not to use words like usual, typical, or normal.

      In this chapter, we gave you a common language to speak about your data in the workplace. Specifically, we described:

       Data, datasets, and multiple names for the rows and columns of a dataset

       Numerical data (continuous vs. count)

       Categorical data (original vs. nominal)

       Experimental vs. observational data

       Structured vs. unstructured data

       Measures of central tendency

      With the correct terminologies in place, you're ready to start thinking statistically about the data you come across.

      1 1 There are additional levels of continuous data, called ratio and interval. Feel free to look them up, but we rarely see the terms used in a business setting. And there are situations when the distinction between continuous and count data doesn't really matter. High count numbers, like website visits, are often considered continuous for the purpose of data analysis rather than count. It's when the count data is near zero that the distinction really matters. We'll explore this more in the coming chapters.

      2 2 Here's a quick example of confounding. In a drug trial, if the treatment group consists of only children and no one got sick, you'd be left wondering if their protection from the disease was caused by an effective drug treatment or because children had some inherent protection from the disease. The effect of the drug would be confounded with age. Random assignment between the control and treatment groups prevents this.

      3 3 “Data Is” vs. “Data Are”: fivethirtyeight.com/features/data-is-vs-data-are

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7STeUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFBy b29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAA AQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAA ABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJv b2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAA AABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAA AABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBkb3ViQG/gAAAAAAAAAAAAQmwg IGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAAAABCbGQgVW50RiNSbHQAAAAA AAAAAAAAAABSc2x0VW50RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JEYXRhYm9vbAEAAAAAUGdQc2Vu dW0AAAAAUGdQcwAAAABQZ1BDAAAAAExlZnRVbnRGI1JsdAAAAAAAAAAAAAAAAFRvcCBVbnRGI1Js dAAAAAAAAAAAAAAAAFNjbCBVbnRGI1ByY0BZAAAAAAAAAAAAEGNyb3BXaGVuUHJpbnRpbmdib29s AAAAAA5jcm9wUmVjdEJvdHRvbWxvbmcAAAAAAAAADGNyb3BSZWN0TGVmdGxvbmcAAAAAAAAAD

Скачать книгу