Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics. Patrick Muldowney

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - Patrick Muldowney


Скачать книгу
href="#fb3_img_img_fe9fd190-acf7-5cec-b2c1-129a969c01e9.png" alt="script upper Y"/> (or script upper S Subscript t) from many jointly varying random variables, such as script upper X left-parenthesis s right-parenthesis, as s varies between the values 0 and t. This is reminiscent of Norbert Wiener's construction in [169], which is in some sense a mathematical replication in one dimension of Brownian motion; even though the latter is essentially an infinite‐dimensional phenomenon with infinitely many variables. Without losing any essential information, a situation involving infinitely many variables is converted to a scenario involving only one variable.3

      The proof of the Itô isometry relation (see I1) indicates that, as a stochastic process, script upper Z left-parenthesis s right-parenthesis must be independent of script upper X left-parenthesis s right-parenthesis. Otherwise the construction I1, I2, I3 would seem to be inadequate as it stands, whenever the process script upper Z left-parenthesis s right-parenthesis is replaced by a process f left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis.

      In I3 the integrand script upper Z left-parenthesis s right-parenthesis does not have step function form; and, on the face of it, integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis indicates dependence of script upper Y (or script upper S Subscript t) on random variables script upper Z left-parenthesis s right-parenthesis and script upper X left-parenthesis s right-parenthesis for every s, 0 less-than-or-equal-to s less-than-or-equal-to t. If the integrand were f left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis (which, in general, it is not), with joint random variability for 0 less-than-or-equal-to s less-than-or-equal-to t, and if left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis is Brownian motion, then the joint probability space for the processes left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis and left-parenthesis f left-parenthesis script upper X left-parenthesis s right-parenthesis right-parenthesis right-parenthesis is given by the Wiener probability measure and its associated multi‐dimensional measure space. (The latter are described in Chapter 5 below.)

      Returning to I1, the Itô integral integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis of step function script upper Z left-parenthesis s right-parenthesis is defined as

sigma-summation Underscript j equals 1 Overscript n Endscripts script upper Z Subscript j minus 1 Baseline left-parenthesis script upper X left-parenthesis t Subscript j Baseline right-parenthesis minus script upper X left-parenthesis t Subscript j minus 1 Baseline right-parenthesis right-parenthesis

      where the script upper Z Subscript j are random variable values of script upper Z equals left-parenthesis script upper Z left-parenthesis s right-parenthesis right-parenthesis. It is perfectly valid to combine finite numbers of random variables in this way, in order to produce, as outcome, a single random variable (—which may be a joint random variable depending on many underlying random variables).

      This part of the formulation of the integral of a step function in I1 corresponds to the integral of a step function in basic integration, and does not require any passage to a limit of random variables.

integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d s equals sigma-summation Underscript j equals 1 Overscript n Endscripts left-parenthesis script upper Z Subscript j minus 1 Baseline times left-parenthesis t Subscript j Baseline minus t Subscript j minus 1 Baseline right-parenthesis right-parenthesis equals sigma-summation Underscript j equals 1 Overscript n Endscripts alpha Subscript j minus 1 Baseline left-parenthesis t Subscript j Baseline minus t Subscript j minus 1 Baseline right-parenthesis period

      Formally, at least, this looks like the definition in I1 of integral Subscript 0 Superscript t Baseline script upper Z left-parenthesis s right-parenthesis d script upper X left-parenthesis s right-parenthesis when script upper Z left-parenthesis s right-parenthesis is a step function. The factor t Subscript j Baseline minus t Subscript j minus 1 equals integral Subscript t Subscript j minus 1 Baseline Superscript t Subscript j Baseline d s for each j. This emerges naturally from the mathematical meaning of the length or distance variable s, and from the


Скачать книгу