Statistical Methods and Modeling of Seismogenesis. Eleftheria Papadimitriou
of hypocenter in a local spherical system} (Lasocki and Orlecka-Sikora 2020) or four dimensional – {interevent time, interevent distance, hypocentral distance from the main shock and magnitude} (Lasocki 2014), to mention only a few. Figure 1.8, taken from (Lasocki 2014), shows an example of the use of transformation to ED. The transformation to equivalent dimensions is also available on the IS-EPOS Platform (tcs.ah-epos.eu, Orlecka-Sikora et al. 2020).
Figure 1.7. An example of the transformation to equivalent dimensions. The first column – raw data, and the second column–transformed data. The first raw – the polar angles of hypocenter in a local spherical system of coordinates, and the second raw – magnitude. For a color version of this figure, see www.iste.co.uk/limnios/statistical.zip
Figure 1.8. Changes in time of the total distance to centroid of the groups of 100 seismic events from the North Aegean area in Greece, preceding an Mw6.4 mainshock from July 26, 2001. The data was from a 100 km radius circle, centered at that mainshock location, and froma an 11.5-year period from January 1, 1981 to July 25, 2001. The events were represented by the interevent time, interevent distance, hypocentral distance from the main shock and magnitude, all transformed to equivalent dimensions. The black line represents the result for the actual time series of events, and the gray lines represent the results for 10 random permutations of the actual series. From about 3 years before the mainshock, the distance to the centroid exhibits a systematic decreasing trend. This result significantly differs from the results obtained from the permuted time series. This means that the mainshock was preceded by an increasing clustering of smaller events in the considered parameter space. Reprinted from Lasocki (2014, Figure 6a).
1.7. References
Aki, K. (1965). Maximum likelihood estimate of b in the formula logN=a–bM and its confidence limits. Bull. Earthq. Res. Inst. Tokyo Univ., 43, 237–239.
Bender, B. (1983). Maximum likelihood estimation of the b-values for magnitude grouped data. Bull. Seismol. Soc. Am., 73, 831–851.
Cosentino, P., Ficarra, V., Luzio, D. (1977). Truncated exponential frequency-magnitude relationship in earthquake statistics. Bull. Seism. Soc. Am., 67, 615–1623.
Davison Jr, F.C., Scholz, C.H. (1985). Frequency-moment distribution of earthquakes in the Aleutian Arc: A test of the characteristic earthquake model. Bull. Seismol. Soc. Am., 75, 1349–1361.
Efron, B. (1987). Better bootstrap confidence intervals. Journal of American Statistical Association, 82(397), 171–200.
Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Chapman & Hall, London.
Jackson, D.D. and Kagan, Y.Y. (1999). Testable earthquake forecasts for 1999. Seismol. Res. Lett., 70, 393–403.
Kagan, Y.Y. (1999). Universality of the seismic moment-frequency relation. Pure Appl. Geophys., 155, 537–573.
Kijko, A., Lasocki, S., Graham, G. (2001). Nonparametric seismic hazard analysis in mines. Pure Appl. Geophys., 158, 1655–1676.
Lasocki, S. (1993). Weibull distribution as a model for sequence of seismic events induced by mining. Acta Geophys. Pol., 41, 101–112.
Lasocki, S. (2001). Quantitative evidences of complexity of magnitude distribution in mining-induced seismicity: Implications for hazard evaluation. In 5th International Symposium on Rockbursts and Seismicity in Mines: Dynamic Rock Mass Response to Mining, van Aswegen, G., Durrheim, R.J., Ortlepp, W.D. (eds). S. Afr. Inst. of Min. and Metall., Johannesburg.
Lasocki, S. (2007). Evidences of complexity of magnitude distribution, obtained from a non-parametric testing procedure. 5th International Workshop on Statistical Seismology: Physical and Stochastic modelling of Earthquake Occurrence and Forecasting, EMFCSC, Erice, Sicily (Italy), 31 May–6 June 2007 [Online]. Available at: https://www.earth-prints.org/bitstream/2122/2337/1/Lasocki_20070604.pdf [Accessed November 2020].
Lasocki, S. (2014). Transformation to equivalent dimensions – A new methodology to study earthquake clustering. Geophys. J. Int., 197, 1224–1235.
Lasocki, S. and Orlecka-Sikora, B. (2008). Seismic hazard assessment under complex source size distribution of mining-induced seismicity. Tectonophysics, 456, 28–37.
Lasocki, S. and Orlecka-Sikora, B. (2020). High injection rates counteract formation of far-reaching fluid migration pathways at The Geysers geothermal field. Geophysical Research Letters, 47(4), e2019GL086212.
Lasocki, S. and Papadimitriou, E.E. (2006). Magnitude distribution complexity revealed in seismicity from Greece. J. Geophys. Res., 111, B11309.
Leptokaropoulos, K. (2020). Magnitude distribution complexity and variation at The Geysers geothermal field. Geophys. J. Int., 222, 893–906.
Leptokaropoulos, K. and Lasocki, S. (2020). SHAPE: A MATLAB software package for time-dependent seismic hazard analysis. Seismol. Res. Lett., 91, 1867–1877.
Leptokaropoulos, K.M., Karakostas, V.G., Papadimitriou, E.E., Adamaki, A.K., Tan, O., Inan, S. (2013). A homogeneous earthquake catalog for Western Turkey and magnitude of completeness determination. Bull. Seismol. Soc. Am., 103, 2739–2751.
Mignan, A. and Woessner, J. (2012). Estimating the magnitude of completeness for earthquake catalogs. Community Online Resource for Statistical Seismicity Analysis.
Orlecka-Sikora, B. (2004). Bootstrap and jackknife resampling for improving in the nonparametric seismic hazard estimation. In The IUGG 3003 Proceedings Volume “Earthquake Hazard, Risk and Ground Motion”, Chen, Y.T., Panza, G.F., Wu, Z.L. (eds). Seismological Press, Beijing.
Orlecka-Sikora, B. (2008). Resampling methods for evaluating the uncertainty of the nonparametric magnitude distribution estimation in the probabilistic seismic hazard analysis. Tectonophysics, 456, 38–51.
Orlecka-Sikora, B. and Lasocki, S. (2005). Nonparametric characterization of mining induced seismic sources. In Proc. Sixth Int. Symp. on Rockburst and Seismicity in Mines 9–11 March 2005, Australia, Potvin, Y. and Hudyma, M. (eds). Australian Centre for Geomechanics, Nedlands.
Orlecka-Sikora, B. and Lasocki, S. (2017). Interval estimation of seismic hazard parameters. Pure Appl. Geophys., 174, 779–791.
Orlecka-Sikora, B., Cielesta, S., Lasocki, S. (2019) Tracking the development of seismic fracture network from The Geysers geothermal field. Acta Geophysica, 67, 341–350.
Orlecka-Sikora, B., Lasocki, S., Kocot, J., Szepieniec, T., Grasso, J-R., Garcia-Aristizabal, A., Schaming, M., Urban, P., Jones, G., Stimpson, I., Dineva, S., Sałek, P., Leptokaropoulos, K., Lizurek, G., Olszewska, D., Schmittbuhl, J., Kwiatek, G., Blanke, A., Saccorotti, G., Chodzińska, K., Rudziński, Ł., Dobrzycka, I., Mutke, G., Barański, A., Pierzyna, A., Kozlovkaya, E., Nevalainen, J., Kinscher, J., Sileny, J., Sterzel, M., Cielesta, S., Fischer, T. (2020). An open data infrastructure for the study of anthropogenic hazards linked to georesource exploitation. Scientific Data, 7, 89.