Genetic Disorders and the Fetus. Группа авторов
translocations in man are predominantly paternal in origin and associated with a significant increase in paternal age. J Med Genet 2010; 47(2):112.
476 476. Teras LR, Gaudet MM, Blase JL, Gapstur SM. Parental Age at birth and risk of hematological malignancies in older adults. Am J Epidemiol 2015; 182(1):41.
477 477. Green RF, Devine O, Crider KS, et al. Association of paternal age and risk for major congenital anomalies from the National Birth Defects Prevention Study, 1997 to 2004. Ann Epidemiol 2010; 20(3):241.
478 478. World Health Organization. Towards more objectivity in diagnosis and management of male infertility. Int J Androl 1987; 7:1.
479 479. Levy B, Sigurjonsson S, Pettersen B, et al. Genomic imbalance in products of conception: single‐nucleotide polymorphism chromosomal microarray analysis. Obstet Gynecol 2014; 124(2 Pt 1):202.
480 480. Abur U, Gunes S, Asci R, et al. Chromosomal and Y‐chromosome microdeletion analysis in 1,300 infertile males and the fertility outcome of patients with AZFc microdeletions. Andrologia 2019; 51(11):e.13402.
481 481. Scriver CR, Beaudet AL, Sly WS, et al. The metabolic and molecular bases of inherited disease, vol. II, 7th edn. New York: McGraw‐Hill, 1995:B3008.
482 482. Turnpenny PD, Gunasegaran R, Smith NC, et al. Recurrent miscarriage, cystic hygroma and incontinentia pigmenti. Br J Obstet Gynaecol 1992; 99:920.
483 483. Poursadegh Zonouzi A, Chaparzadeh N, Ghorbian S, et al. The association between thrombophilic gene mutations and recurrent pregnancy loss. J Assist Reprod Genet 2013; 30:1353.
484 484. Bouvier S, Cochery‐Nouvellon E, Lavigne‐Lissalde G, et al. Comparative incidence of pregnancy outcomes in thrombophilia‐positive women from the NOH‐APS observational study. Blood 2014; 123:414.
485 485. Bolor H, Mori T, Nishiyama S, et al. Mutations of the SYCP3 gene in women with recurrent pregnancy loss. Am J Hum Genet 2009; 84:14.
486 486. Tucker EJ, Grover SR, Bachelot A, et al. Premature ovarian insufficiency: new perspectives on genetic cause and phenotypic spectrum. Endocr Rev 2016; 37(6):609.
487 487. Maddirevula S, Awartani K, Coskun S, et al. A genomics approach to females with infertility and recurrent pregnancy loss. Hum Genet 2020; 139:605.
488 488. Patel B, Parets S, Akana M, et al. Comprehensive genetic testing for female and male infertility using next level generation sequencing. J Assist Reprod Genet 2018; 35(8):1489.
489 489. AlAsiri S, Basit S, Wood‐Trageser MA, et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J Clin Invest 2015; 125(1):258.
490 490. Wood‐Trageser MA, Gurbuz F, Yatsenko SA, et al. MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability. Am J Hum Genet 2014; 95(6):754.
491 491. Kasippillai T, MacArthur DG, Kirby A, et al. Mutations in eIF4ENIF1 are associated with primary ovarian insufficiency. J Clin Endocrinol Metab 2013; 98(9):E1534.
492 492. de Vries L, Behar DM, Smirin‐Yosef P, et al. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency. J Clin Endocrinol Metab 2014; 99(10):E2129.
493 493. Anguiano A, Oates RD, Amos JA, et al. Congenital bilateral absence of the vas deferens: a primarily genital form of cystic fibrosis. JAMA 1992; 267:1794.
494 494. Bieth E, Hamdi SM, Mieusset R. Genetics of the congenital absence of the vas deferens. Hum Genet 2020 Feb 5. DOI: 10.1007/s00439‐020‐02122‐w. Online ahead of print.
495 495. Yu J, Chen Z, Ni Y, et al. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): a systemic review and meta‐analysis. Hum Reprod 2012; 27:25.
496 496. Taulan M, Girardet A, Guittard C, et al. Large genomic rearrangements in the CFTR gene contribute to CBAVD. BMC Med Genet 2007; 8:22.
497 497. Traystman MD, Schulte NA, MacDonald M, et al. Mutation analysis for cystic fibrosis to determine carrier status in 167 sperm donors from the Nebraska Genetic Semen Bank. Hum Mutat 1994; 4:271.
498 498. Patat O, Pagin A, Siegfried A, et al. Truncating mutations in the adhesion G protein‐coupled receptor G2 gene ADGRG2 cause an X‐Linked congenital bilateral absence of vas deferens. Am J Hum Genet 2016; 99:437.
499 499. Wu H, Gao Y, Ma C, et al. A novel hemizygous loss‐of‐function mutation in ADGRG2 causes male infertility with congenital bilateral absence of the vas deferens. J Assist Reprod Genet 2020; 37(6):1421.
500 500. Augarten A, Yahav Y, Kerem BS, et al. Congenital bilateral absence of vas deferens in the absence of cystic fibrosis. Lancet 1994; 344:1473.
501 501. Schwarzer JU, Schwarz M. Significance of CFTR gene mutations in patients with congenital aplasia of vas deferens with special regard to renal aplasia. Andrologia 2012; 44:305.
502 502. Temple‐Smith PD, Southwick GJ, Yates CA, et al. Human pregnancy by IVF using sperm aspirated from the epididymis. J In Vitro Fertil Embryo Transfer 1985; 2:119.
503 503. Silber SJ, Ord T, Balmaceda J, et al. Congenital absence of the vas deferens: the fertilizing capacity of human epididymal sperm. N Engl J Med 1990; 7:147.
504 504. Flannigan R, Schlegel PN. Genetic diagnosis of male infertility in clinical practice. Best Pract Res Clin Obstet Gynaecol 2017; 44:26.
505 505. Milunsky A, Milunsky JM, Dong W, et al. A contiguous microdeletion syndrome at Xp23.13 with non‐obstructive azoospermia and congenital cataracts. J Assist Reprod Genet 2020; 37:471.
506 506. Colaco S, Modi D. Genetics of the human Y chromosome and its association with male infertility. Reprod Biol Endocrinol 2018; 16:14
507 507. Najmabadi H, Huang V, Yen P, et al. Substantial prevalence of microdeletions of the Y chromosome in infertile men with idiopathic azoospermia and oligospermia detected using a sequence‐tagged site‐based mapping strategy. J Clin Endocrinol Metab 1996; 71:1347.
508 508. Ma K, Inglis JD, Sharkey A, et al. A Y chromosome gene family with RNA‐binding protein homology: candidates for the azoospermia factor AZF controlling human spermatogenesis. Cell 1993; 73:1287.
509 509. Reijo R, Alagappan RK, Patrizio P, et al. Severe oligo‐zoospermia resulting from deletions of azoospermia factor gene on Y chromosome. Lancet 1996; 347:1290.
510 510. de Kretser DM. Male infertility. Lancet 1997; 349:787.
511 511. Bonduelle M, Hamberger L, Joris H, et al. Assisted reproduction by intracytoplasmic sperm injection: an ESHRE survey of clinical experiences until December 1993. Hum Reprod Update 1995; 1:3.
512 512. Meschede D, Horst J. Sex chromosomal anomalies in pregnancies conceived through intracytoplasmic sperm injection: a case for genetic counseling. Hum Reprod 1997; 12:1125.
513 513. Chandley AC. Meiotic studies and fertility in human translocation carriers. In: Daniel A, ed. The cytogenetics of mammalian autosomal rearrangements. New York: Alan R. Liss, 1988:370.
514 514. Dohle GR, Halley DJ, van Hemel JO, et al. Genetic risk factors in infertile men with severe oligo‐zoospermia and azoospermia. Hum Reprod 2002; 17:13.
515 515. Özdemir TR, Özyilmaz B, Çakmak Ö, et al. Evaluation of chromosomal abnormalities and Y‐chromosome microdeletions in 1696 Turkish cases with primary male infertility: a single‐center study. Turk J Urol 2020; 46:95.
516 516. Bunyan DJ, Thomas NS. Screening of a large cohort of blepharophimosis, ptosis, epicanthus inversus syndrome patients reveals a very strong paternal inheritance bias and a wide spectrum of novel FOXL2 mutations. Eur J Med Genet 2019: 62.
517 517. Stentz NC, Koelper N, Barnhart KT, et al. Infertility and mortality. Am J Obstet Gynecol 2020; 222:251e.1.
518 518. Hargreave M, Jensen A, Hansen MK, et al. Association between fertility treatment and cancer risk in children. JAMA 2019; 322:2203.
519 519. Spector LG, Brown MB, Wantman E, et al. Association of in vitro fertilization without childhood cancer in the United States. JAMA Pediatr 2019; 0392(6):e1903392.
520 520.