Genetic Disorders and the Fetus. Группа авторов
al. Spectrum of X‐linked intellectual disabilities and psychiatric symptoms in a family harbouring a Xp22.12 microduplication encompassing the RPS6KA3 gene. J Genet 2019; 98:10.
663 663. Jackson MR, Loring KE, Homan CC, et al. Heterozygous loss of function of IQSEC2/Iqsec2 leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females. Life Sci Alliance 2019; 2:e.201900386.
664 664. Stoll C, Geraudel A, Chauvin A. New X‐linked syndrome of mental retardation, short stature and hypertelorism. Am J Med Genet 1991; 39:474.
665 665. Atkin JF, Flaitz K, Patil S, et al. A new X‐linked mental retardation syndrome. Am J Med Genet 1985; 21:697.
666 666. Barresi S, Tomaselli S, Athanasiadis A, et al. Oligophrenin‐1 (OPHN1), a gene involved in X‐linked intellectual disability, undergoes RNA editing and alternative splicing during human brain development. PLoS One 2014; 9:e91351.
667 667. Al‐Owain M, Kaya N, Al‐Zaidan H, et al. Novel intragenic deletion in OPHN1 in a family causing XLMR with cerebellar hypoplasia and distinctive facial appearance. Clin Genet 2011; 79:363.
668 668. Dowling JJ, Lawlor MW, Das S. X‐linked myotubular myopathy. GeneReviews® Seattle (WA): University of Washington, Seattle, 1993–2020, 2002 [updated 2018 Aug 23].
669 669. Brancaleoni V, Balwani M, Granata F, et al. X‐chromosomal inactivation directly influences the phenotypic manifestation of X‐linked protoporphyria. Clin Genet 2016; 89:20.
670 670. Nowakowski R. Ocular manifestations in female carriers of X‐linked disorders. J Am Optom Assoc 1995; 66:352.
671 671. Mornet E, Chateau C, Taillandier A, et al. Recurrent and unexpected segregation of the FMR1 CGG repeat in a family with fragile X syndrome. Hum Genet 1996; 97:512.
672 672. Bowling KM, Thompson ML, Amaral MD, et al. Genomic diagnosis for children with intellectual disability and/or developmental delay. Genome Med 2017; 9:43.
673 673. Sun Y, Ruivenkamp CAL, Hoffer MJV, et al. Next‐generation diagnostics: gene panel, exome, or whole genome? Hum Mutat 2015; 36:648.
674 674. Vissers LELM, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders. Nat Rev Genet 2016; 17:9.
675 675. Mir YR, Kuchay RAH. Advances in identification of genes involved in autosomal recessive intellectual disability: a brief review. J Med Genet 2019; 56:567.
676 676. Linstrand A, Eisfeldt J, Pettersson M, et al. From cytogenetics to cytogenomics: whole‐genome sequencing as a first‐line test comprehensively captures the diverse spectrum of disease‐causing genetic variation underlying intellectual disability. Genome Med 2019; 11:68.
677 677. Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first‐tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86(5):749.
678 678. Waggoner D, Wain KE, Dubuc AM, et al. Yield of additional genetic testing after chromosomal microarray for diagnosis of neurodevelopmental disability and congenital anomalies: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2018; 20(10):1105.
679 679. Clark DW, Okada Y, Moore KHS, et al. Associations of autozygosity with a broad range of human phenotypes. Nat Commun 2019; 10:4957.
680 680. Abdulrazzaq YM, Bener A, Al‐Gazali LI, et al. A study of possible deleterious effects of consanguinity. Clin Genet 1997; 51:167.
681 681. Saadallah AA, Rashed MS. Newborn screening: experiences in the Middle East and North Africa. J Inherit Metab Dis 2007; 30:482.
682 682. Bundey S, Alam H, Kaur A, et al. Race, consanguinity and social features in Birmingham babies: a basis for prospective study. J Epidemiol Commun Health 1990; 44:130.
683 683. Khoury SA, Massad DF. Consanguinity, fertility, reproductive wastage, infant mortality and congenital malformations in Jordan. Saudi Med J 2000; 21:150.
684 684. Stoltenberg C, Magnus P, Lie RT, et al. Birth defects and parental consanguinity in Norway. AmJ Epidemiol 1997; 145:439.
685 685. Perveen F, Tyyab S. Frequency and pattern of distribution of congenital anomalies in the newborn and associated maternal risk factors. J Coll Physicians Surg Pak 2007; 17:340.
686 686. Monies D, Abouelhoda M, Assoum M, et al. Lessons learned from large‐scale, first‐tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet 2019; 104(6):1182.
687 687. Vora NL, Gilmore K, Brandt A, et al. An approach to integrating exome sequencing for fetal structural anomalies into clinical practice. Genet Med 2020; 22(5):954.
688 688. Meier N, Bruder E, Lapaire O, et al. Exome sequencing of fetal anomaly syndromes: novel phenotype‐genotype discoveries. Eur J Hum Genet 2019; 27:730.
689 689. Malinowski J, Miller DT, Demmer L, et al. Systematic evidence‐based review: outcomes from exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disabilities. Genet Med 2020; 22(6):986.
690 690. Milunsky A. Heredity and your family's health. Baltimore, MD: Johns Hopkins University Press, 1992.
691 691. Greenbaum L, Pode‐Shakked B, Eisenberg‐Barzilai S, et al. Evaluation of diagnostic yield in fetal whole‐exome sequencing: a report on 45 consecutive families. Front Genet 2019; 10:425.
692 692. Goh YI, Chudley AE, Clarren SK, et al. Development of Canadian screening tools for fetal alcohol spectrum disorder. Can J Clin Pharmacol 2008; 15:e344.
693 693. Memo L, Gnoato E, Caminiti S, et al. Fetal alcohol spectrum disorders and fetal alcohol syndrome: the state of the art and new diagnostic tools. Early Hum Dev 2013; 89(Suppl 1):S40.
694 694. Chudley AE. Fetal alcohol spectrum disorder: counting the invisible – mission impossible? Arch Dis Child 2008; 93:721.
695 695. Clarren SK, Randels SP, Sanderson M, et al. Screening for fetal alcohol syndrome in primary schools: a feasibility study. Teratology 2001; 63:3.
696 696. Holmes LB. Human teratogens: update 2010. Birth Defects Red A Clin Mol Teratol 2011; 91:1.
697 697. Gheysen W, Kennedy D. An update on maternal medication‐related embryopathies. Prenat Diagn 2020; 40:1168.
698 698. Milunsky A, Ulcickas M, Rothman KJ, et al. Maternal heat exposure and neural tube defects. JAMA 1992; 268:882.
699 699. Saunders NR, Dziegielewska KM. Medications for pregnant women: A balancing act between the interests of the mother and of the fetus. Prenat Diagn 2020; 40:1156.
700 700. Martinez‐Frias ML, Bermejo E, Rodriguez‐Pinilla E, et al. Periconceptional exposure to contraceptive pills and risk for Down syndrome. J Perinatol 2001; 21:288.
701 701. Shub A, Lappas M. Pregestational diabetes in pregnancy: complications, management, surveillance, and mechanisms of disease – a review. Prenat Diagn 2020; 40:1092.
702 702. Murray SR, Reynolds RM. Short‐ and long‐term outcomes of gestational diabetes and its treatment on fetal development. Prenat Diagn 2020; 40:1085.
703 703. Evans MI, Andriole S, Curtis J, et al. The epidemic of abnormal copy number variant cases missed because of reliance upon noninvasive prenatal screening. Prenat Diagn 2018; 38(10):730.
704 704. Vora NL, Powell B, Brandt A, et al. Prenatal exome sequencing in anomalous fetuses: new opportunities and challenges. Genet Med 2017; 19:1207.
705 705. Jelin AC, Vora N. Whole exome sequencing: applications in prenatal genetics. Obstet Gynecol Clin North Am 2018; 45:69.
706 706. Best S, Wou K, Vora N, et al. Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn 2018; 38:10.
707 707. Normand EA, Braxton A, Nassef S, et al. Clinical exome sequencing for fetuses with ultrasound abnormalities and suspected Mendelian disorder 2018; 10:74.
708 708. Lord J, McMullan DJ, Eberhardt RY, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography