Genetic Disorders and the Fetus. Группа авторов
14:316.
800 800. Shi D, Xu J, Niu W, et al. Live births following preimplantation genetic testing for dynamic mutation diseases by karyomapping: a report of three cases. J Assist Reprod Genet 2020; 37:539.
801 801. Fernández RM, Lozano‐Arana MD, Sánchez B, et al. Preimplantation genetic diagnosis for myotonic dystrophy type 1 and analysis of the effect of the disease on the reproductive outcome of the affected female patients. Biomed Red Int 2017; 2017:9165363.
802 802. Milunsky A, Baldwin C, Milunsky J. Molecular genetics and prenatal diagnosis. In: Milunsky A, Milunsky J, eds. Genetic disorders and the fetus: diagnosis, prevention and treatment, 7th edn. Hoboken, NJ: John Wiley & Sons, 2016: 380.
803 803. Gerbrands LC, Haarman EG, Hankel MA, et al. Cystic fibrosis and Silver‐Russell syndrome due to a partial maternal isodisomy of chromosome 7. Clin Case Rep 2017; 5(10):1697.
804 804. Sotomayor FV, Abarca‐Barriga HH. Homozygous deletion of the CFTR gene caused by interstitial maternal isodisomy in a Peruvian child with cystic fibrosis. J Pediatr Genet 2019; 8(3):147.
805 805. Ammerpohl O, Martín‐Subero JI, Richter J, et al. Hunting for the 5th base: techniques for analyzing DNA methylation. Biochim Biophys Acta 2009; 1790:847.
806 806. Dedeurwaerder S, Defrance M, Calonne E, et al. Evaluation of the Infinium methylation 450K technology. Epigenomics 2011; 3:771.
807 807. Begemann M, Rezwas FI, Beygo J, et al. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J Med Genet 2018; 55:497.
808 808. Yauy K, de Leeuw N, Yntema HG, et al. Accurate detection of clinically relevant uniparental disomy from exome sequencing data. Genet Med 2020; 22:803.
809 809. Bhoj EJ, Rajabi F, Baker SW, et al. Imprinted genes in clinical exome sequencing: Review of 538 cases and exploration of mouse‐human conservation in the identification of novel human disease loci. Eur J Med Genet 2020; 63:103903.
810 810. del Gaudio D, Shinawi M, Astbury C, et al. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020; 22:1133.
811 811. Court F, Martin‐Trujillo A, Romanelli V, et al. Genome‐wide allelic methylation analysis reveals disease‐specific susceptibility to multiple methylation defects in imprinting syndromes. Hum Mutat 2013; 34:595.
812 812. Elbracht M, Mackay D, Begemann M, et al. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum Reprod Update 2020; 26:197.
813 813. Docherty LE, Rezwan FI, Poole RL, et al. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun 2015; 6:8086.
814 814. Soellner L, Begemann M, Degenhardt F, Geipel A, et al. Maternal heterozygous NLRP7 variant results in recurrent reproductive failure and imprinting disturbances in the offspring. Eur J Hum Genet 2017; 25:924.
815 815. Lee MT, Bonneau AR, Giraldez AJ. Zygotic genome activation during the maternal‐to‐zygotic transition. Annu Rev Cell Dev Biol 2014; 30:581.
816 816. Zhou LQ, Dean J. Reprogramming the genome to totipotency in mouse embryos. Trends Cell Biol 2015; 25:82.
817 817. Vicenz C, Lovett JL, Wu W, et al. Loss of imprinting in human placentas is widespread, coordinated, and predicts birth phenotypes. Mol Biol Evol 2020; 37:429.
818 818. Giabicani É, Brioude F, Le Bouc Y, et al. Imprinted disorders and growth. Ann Endocrinol (Paris) 2017; 78:112.
819 819. Rhon‐Calderon EA, Vrooman LA, Riesche L, et al. The effects of assisted reproductive technologies on genomic imprinting in the placenta. Placenta 2019; 84:37.
820 820. Litzky JP, Deyssenroth MA, Everson TM, et al. Prenatal exposure to maternal depression and anxiety on imprinted gene expression in placenta and infant neurodevelopment and growth. Pediatr Res 2018; 83(5):1075.
821 821. John RM. Imprinted genes and the regulation of placental endocrine function: pregnancy and beyond. Placenta 2017; 56:86.
822 822. Hattori H, Hiura H, Kitamura A, et al. Association of four imprinting disorders and ART. Clin Epigenetics 2019; 11:21.
823 823. Uk A, Collardeau‐Frachon S, Scanvion Q, et al. Assisted reproductive technologies and imprinting disorders: results of a study from a French congenital malformations registry. Eur J Med Genet 2018; 61:518.
824 824. Mackay DJG, Temple IK. Human imprinting disorders: principles, practice, problems, and progress. Eur J Med Genet 2017; 60:618.
825 825. Henningsen AA, Gissler M, Rasmussen S, et al. Imprinting disorders in children born after ART: a Nordic study from CoNARTaS group. Hum Reprod 2020; 35:1178.
826 826. Johnson JP, Beischel L, Schwanke C, et al. Overrepresentation of pregnancies conceived by artificial reproductive technology in prenatally identified fetuses with Beckwith‐Wiedemann syndrome. J Assist Reprod Genet 2018; 35:985.
827 827. Mussa A, Molinatto C, Cerrato F, et al. Assisted reproductive techniques and risk of Beckwith‐Wiedemann syndrome. Pediatrics 2017; 140:e20164311.
828 828. Cortessis VK, Azadian M, Buxbaum J, et al. Comprehensive meta‐analysis reveals association between multiple imprinting disorders and conception by assisted reproductive technology. J Assist Reprod Genet 2018; 35:943.
829 829. Monk D, Mackay DJG, Eggermann T, et al. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact, Nat Rev Genet 2019; 20:235.
830 830. Court F, Tayama C, Romanelli V, et al. Genome‐wide parent‐of‐origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation‐independent mechanism of establishment. Genome Res 2014; 24:554.
831 831. Weksberg R, Shuman C, Caluseriu O, et al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith‐Wiedemann syndrome. Hum Mol Genet 2002; 11:1317.
832 832. Bliek J, Alders M, Maas SM, et al. Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem cells. Eur J Hum Genet 2009; 17:1625.
833 833. Riess A, Binder G, Ziegler J, et al. First report on concordant monozygotic twins with Silver‐Russell syndrome and ICR1 hypomethylation. Eur J Med Genet 2016; 59:1.
834 834. DeAngelis AM, Martini AE, Owen CM. Assisted reproductive technology and epigenetics. Semin Reprod Med 2018; 36:221.
835 835. Bragin E, Chatzimichali EA, Wright CF, et al. DECIPHER: database for the interpretation of phenotype‐linked plausibly pathogenic sequence and copynumber variation. Nucleic Acids Res 2014; 42(Database issue):D993.
836 836. Johnston JJ, Biesecker LG. Databases of genomic variation and phenotypes: existing resources and future needs. Hum Mol Genet 2013; 22(R1):R27.
837 837. Lu J, Campeau P, Lee B. Genotype‐phenotype correlation – promiscuity in the era of next generation sequencing. N Engl J Med 2014; 371:593.
838 838. Adam MP, Banka S, Bjornsson HT, et al. Kabuki syndrome: international consensus diagnostic criteria. J Med Genet 2019; 56:89.
839 839. Bögershausen N, Gatinois V, Riehmer V, et al. Mutation update for Kabuki syndrome genes KMT2D and KDM6A and further delineation of X‐linked Kabuki syndrome subtype 2. Hum Mutat 2016; 37:847.
840 840. Shangguan H, Su C, Ouyang Q, et al. Kabuki syndrome: novel pathogenic variants, new phenotypes and review of the literature. Orphanet J Rare Dis 2019; 14:255.
841 841. Banka S, Lederer D, Benoit V, et al. Novel KDM6A (UTX) mutations and a clinical and molecular review of the X‐linked Kabuki syndrome (KS2). Clin Genet 2015; 87:252.
842 842. Yap KL, Johnson AEK, Fischer D, et al. Correction: “Congenital hyperinsulinism as the presenting feature of Kabuki syndrome: clinical and molecular characterization of 10 affected individuals”. Genet Med 2019; 21:262.
843 843. Courcet JB, Faivre L, Michot C, et al. Clinical and molecular spectrum