Genetic Disorders and the Fetus. Группа авторов
Sujansky E, Kreutzer SB, Johnson AM, et al. Attitudes of at‐risk and affected individuals regarding presymptomatic testing for autosomal dominant polycystic kidney disease. Am J Med Genet 1990; 35:510.
756 756. Hannig VL, Hopkins JR, Johnson HK, et al. Presymptomatic testing for adult onset polycystic kidney disease in at‐risk kidney transplant donors. Am J Med Genet 1991; 40:425.
757 757. Oyazato Y, Iijima K, Emi M, et al. Molecular analysis of TSC2/PKD1 contiguous gene deletion syndrome. Kobe J Med Sci 2011; 57:E1.
758 758. Giardiello FM, Brensinger JD, Petersen GM, et al. The use and interpretation of commercial APC gene testing for familial adenomatous polyposis. N Engl J Med 1997; 336:823.
759 759. Hogan J, Turner A, Tucker K, et al. Unintended diagnosis of Von Hippel‐Lindau syndrome using Array Comparative Genomic Hybridization (CGH): counseling challenges arising from unexpected information. J Genet Couns 2013; 22:22.
760 760. Telander RL, Zimmerman D, Sizemore GW, et al. Medullary carcinoma in children: results of early detection and surgery. Arch Surg 1989; 124:841.
761 761. Ross LF. Predictive genetic testing for conditions that present in childhood. Kennedy Inst Ethics J 2002; 12:225.
762 762. Wertz DC, Fanos JH, Reilly PR. Genetic testing for children and adolescents: who decides? JAMA 1994; 272:875.
763 763. Lancaster JM, Wiserman RW, Berchuk A. An inevitable dilemma: prenatal testing for mutations in the BRCA1 breast‐ovarian cancer susceptibility gene. Obstet Gynecol 1996; 87:306.
764 764. DudokdeWit AC, Tibben A, Frets PG, et al. BRCA1 in the family: a case description of the psychological implications. Am J Med Genet 1997; 71:63.
765 765. Julian‐Reynier C, Eisinger F, Vennin P, et al. Attitudes towards cancer predictive testing and transmission of information to the family. J Med Genet 1996; 33:731.
766 766. Lancaster JM, Wiseman RW, Berchuck A. An inevitable dilemma: prenatal testing for mutations in the BRCA1 breast‐ovarian cancer susceptibility gene. Obstet Gynecol 1996; 87:306.
767 767. Antoniou A, Pharoah PD, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 2003; 72:1117.
768 768. National Comprehensive Cancer Network. Practice guidelines in oncology. Genetic/familial high‐risk assessment: breast and ovarian. Version 1. Fort Washington, PA: National Comprehensive Cancer Network, 2008.
769 769. Burke W, Daly M, Garber J, et al. Recommendations for follow‐up care of individuals with an inherited predisposition to cancer. II. BRCA1 and BRCA2. Cancer Genetics Studies Consortium. JAMA 1997; 277:997.
770 770. King M‐C, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 2003: 302;643.
771 771. Laken SJ, Petersen GM, Gruber SB, et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet 1997; 17:79.
772 772. Verkerk AJ, Pieretti M, Sutcliffe JS, et al. Identification of a gene (FMR‐1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991; 65:905.
773 773. Paulson H. Repeat expansion diseases. Handb Clin Neurol 2018; 147:105.
774 774. Lehesjoki A‐E, Kälviäinen R. Progressive myoclonic epilepsy type 1. GeneReviews® [internet]. Seattle (WA): University of Washington, Seattle, 1993–2020, 2004 Jun 24 [updated 2020 Jul 2].
775 775. Ishikawa K, Dürr A, Klopstock T, et al. Pentanucleotide repeats at the spinocerebellar ataxia type 31 (SCA31) locus in Caucasians. Neurology 2011; 77:1853.
776 776. Corbett MA, Kroes T, Veneziano L, et al. Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nat Commun 2019; 10:4920.
777 777. Campuzano V, Montermini L, Molot MD, et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GA triplet repeat expansion. Science 1996; 271:1423.
778 778. Yum K, Wang ET, Kalsotra A. Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes. Curr Opin Genet Dev 2017; 44:30.
779 779. Jaspert A, Fahsold R, Grehl H, et al. Myotonic dystrophy: correlation of clinical symptoms with the size of the CTG trinucleotide repeat. J Neurol 1995; 242:99.
780 780. Schoser B. Myotonic dystrophy type 2. GeneReviews® [internet]. Seattle (WA): University of Washington, Seattle, 1993–2020, 2006 Sep 21 [updated 2020 Mar 19].
781 781. Higgs C, Hilbert JE, Wood L, et al. Reproductive cancer risk factors in women with myotonic dystrophy (DM): survey data from the US and UK DM registries. Front Neurol 2019; 10:1071.
782 782. Alsaggaf R, Pfeiffer RM, Wang Y, et al. Diabetes, metformin and cancer risk in myotonic dystrophy type 1. Int J Cancer 2020; 147:785.
783 783. Myers RH, MacDonald ME, Koroshetz WJ et al. De novo expansion of a (CAG)n repeat in sporadic Huntington's disease. Ann Neurol 1992; 32:707.
784 784. Trottier Y, Briancalana V, Mandel JL. Instability of CAG repeats in Huntington's disease: relation to parental transmission and age of onset. J Med Genet 1994; 31:377.
785 785. Joosten IBT, Hellebrekers DMEI, de Greef BTA, et al. Parental repeat length instability in myotonic dystrophy type 1 pre‐ and protomutations. Eur J Hum Genet 2020; 28(7):956.
786 786. Margolesky J, Starosta‐Rubenstein S, Verma A, et al. A co‐occurrence of trinucleotide repeat disorders. Mov Disord Clin Pract 2018; 5(6):643.
787 787. McFarland KN, Liu J, Landrian I, et al. Paradoxical effects of repeat interruptions on spinocerebellar ataxia type 10 expansions and repeat instability. Eur J Hum Genet 2013; 21:1272.
788 788. Cumming SA, Hamilton MJ, Robb Y, et al. De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1. Eur J Hum Genet 2018; 26(11):1635.
789 789. Pešović J, Perić S, Brkušanin M, et al. Repeat interruptions modify age at onset in myotonic dystrophy type 1 by stabilizing DMPK expansions in somatic cells. Front Genet 2018; 9:601.
790 790. Laffita‐Mesa JM, Rodriguez Pupo JM, Moreno Sera R, et al. De novo mutations in ataxin‐2 gene and ALS risk. PLoS One 2013; 8:e70560.
791 791. Beaudin M, Matilla‐Dueñas A, Soon B, et al. The classification of autosomal recessive cerebellar ataxias: a consensus statement from the society for research on the cerebellum and ataxias task force. Cerebellum 2019; 18(6):1098.
792 792. Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 2013; 14:248.
793 793. Majounie E, Renton AE, Mok K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross‐sectional study. Lancet Neurol 2012; 11:323.
794 794. Beck J, Poulter M, Hensman D, et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 92:345.
795 795. Williams KL, Fifita JA, Vucic S, et al. Pathophysiological insights into ALS with C9orf72 expansions. J Neurol Neurosurg Psychiatry 2013; 84:931.
796 796. Lindquist SG, Duno M, Batbayli M, et al. Corticobasal and ataxia syndromes widen the spectrum of C9orf72 hexanucleotide expansion disease. Clin Genet 2013; 83:279.
797 797. van der Zee J, Gijselinck I, Dillen L, et al. A pan‐European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat 2013; 34:363.
798 798. Devenney EM, Ahmed RM, Halliday G, et al. Psychiatric disorders in C9orf72 kindreds: study of 1,414 family members. Neurology 2018; 91:e.1498.
799 799. Esselin F, Mouzat K, Polge A, et al. Clinical phenotype and inheritance in patients